
Test-Case Prioritization for Configuration Testing

Runxiang Cheng
University of Illinois

Urbana-Champaign, IL, USA
rcheng12@illinois.edu

Lingming Zhang
University of Illinois

Urbana-Champaign, IL, USA
lingming@illinois.edu

Darko Marinov
University of Illinois

Urbana-Champaign, IL, USA
marinov@illinois.edu

Tianyin Xu
University of Illinois

Urbana-Champaign, IL, USA
tyxu@illinois.edu

ABSTRACT

Configuration changes are among the dominant causes of failures of

large-scale software system deployment. Given the velocity of con-

figuration changes, typically at the scale of hundreds to thousands

of times daily in modern cloud systems, checking these configura-

tion changes is critical to prevent failures due to misconfigurations.

Recent work has proposed configuration testing, Ctest, a technique

that tests configuration changes together with the code that uses

the changed configurations. Ctest can automatically generate a

large number of ctests that can effectively detect misconfigurations,

including those that are hard to detect by traditional techniques.

However, running ctests can take a long time to detect misconfigu-

rations. Inspired by traditional test-case prioritization (TCP) that

aims to reorder test executions to speed up detection of regression

code faults, we propose to apply TCP to reorder ctests to speed up

detection of misconfigurations. We extensively evaluate a total of

84 traditional and novel ctest-specific TCP techniques. The experi-

mental results on five widely used cloud projects demonstrate that

TCP can substantially speed up misconfiguration detection. Our

study provides guidelines for applying TCP to configuration testing

in practice.

CCS CONCEPTS

· Software and its engineering → Software testing and de-

bugging; Software reliability.

KEYWORDS

Test prioritization, configuration, software testing, reliability

ACM Reference Format:

Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu. 2021.

Test-Case Prioritization for Configuration Testing. In Proceedings of the 30th

ACM SIGSOFT International Symposium on Software Testing and Analysis

(ISSTA ’21), July 11ś17, 2021, Virtual, Denmark. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3460319.3464810

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ISSTA ’21, July 11ś17, 2021, Virtual, Denmark

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8459-9/21/07. . . $15.00
https://doi.org/10.1145/3460319.3464810

1 INTRODUCTION

Besides source-code changes, configuration changes are among the

dominant causes of failures in large-scale software system deploy-

ments. In fact, configuration changes can be much more frequent

than code changes. Many companies are deploying configuration

changes to production systems hundreds to thousands of times

a day [31, 33, 55, 64], hence misconfigurations become inevitable.

For example, 16% of the service-level incidents at Facebook are

induced by configuration changes [60], including major outages

that turn down the entire service [21, 56], and misconfigurations

were reported as the second largest cause of service disruptions

in a main Google service [3]. The prevalence and severity of mis-

configurations have been repeatedly reported by many failure stud-

ies [14, 23, 35, 37, 46, 68, 69, 73, 74].

Recently, Ctest has been proposed as a promising technique

for configuration testing, i.e., testing a configuration before de-

ployment [59, 70]. Ctest can effectively detect misconfigurations.

The key idea of configuration testing is to connect configuration

changes to software tests, so that configuration changes can be

tested in the context of code affected by the changes. In this way,

configuration testing can reason about the program behavior under

the actual configuration values to be deployed and detect sophisti-

cated misconfigurations that can hardly be detected by rule-based

validation [4, 7, 17, 42, 60] or data-driven approaches [33, 38, 53, 54,

62, 66, 67, 76, 78]. Attractively, our prior work [59] shows that con-

figuration test cases, or ctests, can be generated by parameterizing

existing software tests abundant in mature software projectsÐup

to 83.2% of existing tests can be transformed into ctests.

At a high level, a ctest is a software test parameterized by a set of

configuration parameters. Running a ctest instantiates each param-

eter with a concrete value (e.g., the default value, the current value

in production, or a new value to be deployed to production). Given

a configuration change, all the ctests which are parameterized by

at least one of the changed parameters are selected to run. Because

one configuration parameter can parameterize many ctests, a con-

figuration change can require running a large number of ctests.

For example, some configuration changes from the HDFS project

require running more than 2,000 ctests on average, which is over

half of the total number of tests in that project [59]. Overall, in

the Ctest dataset of five open-source projects (HCommon, HDFS,

HBase, ZooKeeper, and Alluxio) [59], the number of ctests per con-

figuration parameter is 1ś3,069 (average 821), and a configuration

change modifies 1ś29 (average 6) parameters.

452

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3460319.3464810
https://doi.org/10.1145/3460319.3464810
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460319.3464810&domain=pdf&date_stamp=2021-07-11

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

One main challenge in adopting configuration testing in contin-

uous deployment is the time required to detect misconfigurations.

This test-running time is on the critical path from the point where

configuration changes are made to the point where they are de-

ployed to production. For example, in the Ctest dataset, the time to

run all ctests ranges from 20 minutes to 230 minutes (with an aver-

age of 97 minutes) per project. Given the velocity of configuration

changes in modern deployment cycles [33, 60, 68], misconfigura-

tions inevitably happen. With the large number of ctests to run be-

fore deployment, the time to detect the misconfiguration is crucial,

because developers cannot start troubleshooting until the miscon-

figuration is detected. The time to detect the misconfiguration can

greatly affect configuration deployment.

We are the first to address the cost of configuration testing using

test-case prioritization (TCP). Traditionally, TCP aims to order re-

gression tests to expose code bugs faster during software evolution.

TCP has been extensively studied for over two decades [10, 48, 75].

For example, widely studied are the total TCP strategy [48] that

favors tests covering more code elements and the additional TCP

strategy [49] that favors tests covering more code elements not yet

covered by already prioritized tests. Inspired by traditional TCP,

we aim to leverage TCP techniques to order ctests to substantially

speed up misconfiguration detection for configuration changes.

We extensively evaluate 84 TCP techniques on the large Ctest

dataset [59], with 7,974 ctests for five open-source projects and 66

real-world configuration change files collected from public Docker

images that have some misconfigured parameter values. Our exper-

iments with configuration changes do not involve code changes,

matching realistic scenarios where only a new configuration is

about to be deployed.We start with 16 basic TCP techniques: (1) ran-

domized as the baseline, (2) traditional techniques based on code

coverage, (3) quickest-time-first (QTF) technique, (4) recently pro-

posed techniques based on information retrieval (IR), and (5) our

novel configuration-specific TCP techniques.

We next enhance the basic TCP techniques using two sources

of inspiration. First, using the idea of cost-cognizant TCP [9, 30],

we enhance basic TCP techniques with the test execution time to

design hybrid TCP techniques. Second, inspired by cross-checking

configurations of multiple system instances used in troubleshooting

systems such as the Microsoft PSS [18, 63, 64], we design a new fam-

ily of peer-based TCP techniques that consider the test outcomes of

ctests on related configuration changes. The insight is to prioritize

earlier ctests that detected misconfigurations of a parameter in

peer deployments, because these ctests are likely effective for the

parameter change regardless of the value. Following Microsoft PSS,

our peer-based TCP techniques are privacy preserving and do not

use potentially sensitive value information of peer deployments

but use only parameter names.

Our study leads to the following key findings:

• Among basic techniques, QTF yields competitive perfor-

mance and often outperforms sophisticated techniques (e.g.,

based on code coverage or IR) and even some configuration-

specific techniques (e.g., based on parameter-coverage and

stack traces) by up to 22% (using an APFDc-like metric, ğ4.2).

• Hybrid TCP techniques that enhance basic techniques with

the test execution time improve the performance of basic

techniques by up to 27%. Our results confirm that hybrid,

cost-cognizant TCP techniques are effective, even in the new

domain of configuration testing.

• Peer-based TCP techniques can outperform other techniques

and improve the performance of TCP even further by 15%.

The results encourage sharing configuration test outcomes

for the same project: łmake friends and don’t test alone!ž

Our paper makes the following contributions:

• Our work reduces the time to find misconfigurations, one

of the main challenges of adopting configuration testing in

real-world continuous deployment process.

• We evaluate 84 traditional and ctest-specific TCP techniques

for configuration testing, and we have released our code and

data at https://github.com/xlab-uiuc/ctest_prio_art.

• We analyze the effectiveness of TCP for ctests and find highly

promising results for reducing the time to find test failures

and thus detecting misconfigurations early.

2 BACKGROUND

Configuration testing is a testing technique for detecting misconfig-

urations (manifesting as failing tests) to prevent them from being

deployed to production systems. The basic idea is to connect soft-

ware tests with the specific configuration to be deployed. In this

way, configuration testing can test configuration changes in the

context of code that is affected by the changed configuration. A con-

figuration test case (ctest) is parameterized by a set of configuration

parameters. Running a ctest instantiates each of its input parame-

ters with an actual configuration value to be deployed to production.

Like regular software tests, ctests exercise the program and check

(via assertions) that program behavior satisfies certain properties

(e.g., correctness, performance, security). Figure 1 illustrates an

example ctest from prior work [59].

Ctest (configuration testing) differs from approaches that explore

multiple configurations, e.g., configuration-aware testing, combi-

natorial testing, or misconfiguration-injection testing [16, 22, 24,

32, 34, 44, 57, 72], which sample representative configurations or

misconfigurations through systematic or random exploration of

the enormous space of value combinations. Systematic exploration

can be prohibitively expensive due to combinatorial explosion [34],

while random exploration can have a low probability of covering all

the values that will be deployed [32]. Ctest has neither the cost of

systematic exploration nor the low coverage of random exploration.

Ctest focuses on testing only one specific configuration that is to

be deployed to the production system.

A ctest 𝑡 (𝑃) is parameterized by a set of configuration param-

eters 𝑃 . Running a ctest instantiates each parameter 𝑝 ∈ 𝑃 with a

concrete value as an argument. 𝑃 is typically a small subset of all

the configuration parameters (denoted as P).

A system configuration is defined as the values of all the con-

figuration parameters, denoted as 𝐶 =
⋃

𝑖=1.. |P |{(𝑝𝑖 ↦→ 𝑣𝑖)}, i.e.,

it assigns a value 𝑣𝑖 to every parameter 𝑝𝑖 ∈ P. Running a ctest

instantiates each parameter 𝑝𝑖 ∈ 𝑃 with its value in the system

configuration 𝑣𝑖 such that (𝑝𝑖 ↦→ 𝑣𝑖) ∈ 𝐶 .

A configuration change updates the values of a subset of the

configuration parameters. A configuration change is in the form

of a configuration file diff 𝐷 . To test a given 𝐷 , not all available

ctests are run. A ctest 𝑡 (𝑃) is selected to test a given 𝐷 if at least

453

https://github.com/xlab-uiuc/ctest_prio_art

Test-Case Prioritization for Configuration Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

public void ctestGetMasterInfoPort() {...}

@Ctest

The value of needed is 6

and is larger than 5 in the

configuration change.

/* jetty-server-9.3.27.v20190418.jar */

protected void doStart() {

if (needed > max)

throw new IllegalStateException(String.format(

“Insufficient threads...”));

}

max = conf.getInt(“hbase.http.max.threads”);

/* http/HttpServer.java */

...

Configuration Change

- hbase.http.max.threads = 10

+ hbase.http.max.threads = 5

Figure 1: A ctest which exercises doStart with the value to

be changed and detects the misconfiguration.

one configuration parameter in 𝐷 is in the input parameter set 𝑃 . A

configuration diff, 𝐷 , passes if all selected ctests pass, and it fails if

any selected ctest fails. Figure 2 gives an example of configuration

testing for a given configuration file diff.

Overall, ctests check whether the configuration to be deployed

has some misconfigurations, which will manifest as ctest failure(s).

TCP for ctests pushes this further by trying to detect these miscon-

figurations, if any, as soon as possible by first running ctests that

are more likely to fail for the new configuration.

3 TCP TECHNIQUES

We next present all the TCP techniques we study for reducing the

cost of detecting misconfigurations in configuration testing. ğ3.1

presents basic TCP techniques that do not require peer configura-

tion changes, while ğ3.2 presents basic TCP techniques that analyze

the correlation between peer configuration changes and test fail-

ures to achieve more precise test prioritization. Lastly, ğ3.3 further

introduces hybrid TCP techniques that combine basic peer-based

or non-peer-based techniques with test execution time. Table 1

summarizes the notation for all evaluated TCP techniques.

3.1 Non-peer-Based TCP

The non-peer-based TCP techniques include both traditional TCP

techniques widely studied for regression testing (ğ3.1.1) and new

TCP techniques we design for configuration testing (ğ3.1.2).

3.1.1 Traditional TCP Techniques. We study the following tradi-

tional TCP techniques:

Code-Coverage-BasedTCP.TCP techniques based on code cover-

age have been extensively evaluated [28, 48, 75] and are still widely

used for comparisons against newly proposed techniques [40, 41].

Code-coverage-based TCP techniques determine the test execution

order based on the code coverage of each test. For example, the total

technique sorts tests in the descending order of the number of code

elements (e.g., methods or statements) covered by each test, while

the additional technique sorts tests in the descending order of the

number of code elements covered by each test but uncovered by the

already prioritized tests [49]. In the literature, code-coverage-based

TCP has been widely studied at both the method and statement

granularities [28]. Thus, we also evaluate total and additional code-

coverage-based TCP at both method (denoted as CC𝑚𝑡𝑜𝑡 and CC𝑚
𝑎𝑑𝑑

)

and statement granularity (denoted as CC𝑠𝑡𝑜𝑡 and CC𝑠
𝑎𝑑𝑑

).

+ p1 = 2

+ p2 = true

- p1 = 0.1

- p2 = false

p1 = 0.1

p2 = false

p3 = foo

p4 = /data

p5 = 250

t1(Pt1), Pt1 = {p1,p2}

t2(Pt2), Pt2 = {p2,p3}

t3(Pt3), Pt3 = {p3}

t4(Pt4), Pt4 = {p3,p4}

t5(Pt5), Pt5 = {p4,p5}

t1(p1,p2)

t2(p2,p3)

// Config file

// Config file diff

// Ctest suite

// Selected ctests

> ctest config.diff

mvn test –Dtest=t1(p1=2,p2=true)

mvn test –Dtest=t2(p2=true,p3=foo)

// Run selected ctests

Figure 2: An overview of configuration testing for a config-

uration file diff. Only t1 and t2 are selected to run because

they may be affected by the configuration change. The ctest

framework [36] is built on top of Maven.

IR-Based TCP. Techniques based on information retrieval (IR)

have been recently proposed and shown effective in test-case prior-

itization [41, 51]. IR-based techniques transform the TCP problem

into an IR problem and address it with off-the-shelf retrieval models

(e.g., Tf-idf [52] and BM25 [47]). A typical IR-based technique ex-

tracts code tokens from test files to form a corpus of documents, and

represents code change information (e.g., tokens extracted from

code change diff) as the query. In this way, a similarity value can

be computed between the query and each test document. Tests

that are more similar to code changes are prioritized earlier to de-

tect problematic changes faster. We implement and evaluate the

IRℎ𝑖𝑔ℎ and IR𝑙𝑜𝑤 techniques with BM25, as it has shown the best

results [41, 51].

QTF-Based TCP. The Quickest Time First (QTF) technique simply

orders all the tests in the ascending order of their execution time

in prior testing runs [50]. Although simple, the QTF technique has

been shown to be competitive compared with state-of-the-art TCP

techniques for regression testing [6]. Therefore, we also evaluate

QTF in the context of configuration testing.

3.1.2 Configuration-Specific TCP Techniques. We further design

the following TCP techniques specifically for configuration testing:

Parameter-Coverage-Based TCP. Inspired by traditional TCP

techniques based on code coverage, we propose novel TCP tech-

niques based on parameter coverage. Following the definition of

ctest (ğ2), each ctest 𝑡 (𝑃) can test a non-empty set of input con-

figuration parameters 𝑃 . We treat 𝑃 as the parameters covered by

𝑡 . We propose total and additional TCP techniques based on such

parameter coverage, denoted as PC𝑡𝑜𝑡 and PC𝑎𝑑𝑑 , respectively.

We also consider the parameter change information to design

change-aware, parameter-coverage-based TCP. For each configura-

tion change 𝐷 , the set of changed parameters is denoted 𝑃𝐷 . For

each ctest 𝑡 (𝑃), we determine its priority based on the set of covered

changed parameters, i.e., 𝑃∩𝑃𝐷 . Change-aware parameter coverage

prioritizes ctests that are more relevant to the configuration change,

thus can potentially detect misconfigurations earlier. We evalu-

ate both total and additional techniques based on change-aware

parameter coverage, denoted as PC𝐷
𝑡𝑜𝑡 and PC𝐷

𝑎𝑑𝑑
, respectively.

Stack-Trace-Based TCP. Different ctests may read and test the

same parameter in different invocation contexts and thus may have

different capabilities in detecting problematic parameter changes.

For example, two ctests 𝑡1 (𝑃1) and 𝑡2 (𝑃2) may read 𝑝 ∈ 𝑃1 ∩ 𝑃2 in

454

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

Table 1: Notation for all evaluated TCP techniques

TCP Category Notation

Traditional (ğ3.1.1)

Method-level code-coverage-based CC𝑚

Statement-level code-coverage-based CC𝑠

IR-based with high tokenization IRℎ𝑖𝑔ℎ
IR-based with low tokenization IR𝑙𝑜𝑤
Quickest time first QTF

Configuration-specific (ğ3.1.2)

Change-unaware parameter-coverage-based PC

Change-aware parameter-coverage-based PC𝐷

Change-unaware stack-trace-based ST

Change-aware stack-trace-based ST𝐷

Peer-based (ğ3.2)

All configurations Conf𝑎𝑙𝑙

Configurations sharing parameter changes Conf𝐷𝑃

Configurations sharing parameter coverage Conf𝑃𝐶

Configurations sharing root causes Conf𝑅𝐶

Shared parameter coverage with peers Para𝑃𝐶

Shared root causes with peers Para𝑅𝐶

Hybrid Models (ğ3.3)

Divide-by-time hybrids ∗+T𝑑𝑖𝑣
Break-tie-by-time hybrids ∗+T𝑡𝑖𝑒

Others

Total techniques ∗𝑡𝑜𝑡
Additional techniques ∗𝑎𝑑𝑑

Randomized order Rand

different source code locations, and the invocation contexts can be

used to prioritize the two reads. Thus, we use the invocation con-

texts for each parameter read for more precise ctest prioritization.

A ctest 𝑡 (𝑃) instantiates each parameter 𝑝 ∈ 𝑃 by reading its

value from configuration file(s) via API calls provided by the con-

figuration management class(es) in the system. The ctest infras-

tructure [36, 59] intercepts the configuration APIs and logs the

stack trace of each API invocation during generation of ctests from

regular tests (and not necessarily during ctest execution). The set

of methods within the invocation contexts for all parameter reads

of each test can be extracted from the stack traces and leveraged for

TCP. We implement both the total and additional techniques based

on such information, denoted as ST𝑡𝑜𝑡 and ST𝑎𝑑𝑑 , respectively.

While ST𝑡𝑜𝑡 and ST𝑎𝑑𝑑 consider all the methods from all stack

traces where 𝑡 reads all the parameters from 𝑃 , the change-aware

variants for a configuration change𝐷 consider all the methods from

all stack traces where 𝑡 reads only the parameters from 𝑃 ∩𝑃𝐷 . The

total and additional techniques for this change-aware variants are

denoted as ST𝐷𝑡𝑜𝑡 and ST𝐷
𝑎𝑑𝑑

, respectively.

3.2 Peer-Based TCP

We now present a family of new ctest TCP techniques, termed peer-

based TCP , that consider the test outcomes of ctests from related,

peer configurations. Data from peer systems have been used in

troubleshooting systems such as the Microsoft PSS [18, 63, 64],

e.g., PeerPressure utilizes configuration data from peer machines to

infer root causes of misbehavior [64]. Inspired by this idea, peer-

based TCP prioritizes ctests that detected misconfigurations of a

parameter in peer deployments, as these ctests are likely to be

effective for the parameter change regardless of the value.

Deploying peer-based TCP can be done via a server/database

that receives, anonymizes, and stores failed configurations and ctest

outcomes from internal or community sources, to be used for future

prioritization, e.g., PeerPressure utilized the GeneBank database to

troubleshoot misconfigurations at Microsoft [64]. Specifically, our

peer-based TCP are privacy preserving and do not use potentially

sensitive values of peer deployments.

The general definition of peer-based TCP is simple. Let 𝐷 be

a configuration change to be tested by a ctest suite 𝑇 , and 𝑆 be a

set of peer configuration changes (𝐷 ∉ 𝑆) that have been tested.

A peer-based TCP technique orders 𝑇 based on various statistics

collected from 𝑆 . Depending on the granularity of the peer anal-

ysis, we propose two categories of peer-based techniques, at the

configuration granularity (ğ3.2.1) and the parameter granularity

(ğ3.2.2). Given a ctest 𝑡 , 𝐷 , and information from 𝑆 , each technique

computes a set of elements 𝑋 (𝑡, 𝐷, 𝑆) for the ctest; these sets can

be ordered using a total (𝑋𝑡𝑜𝑡) or additional (𝑋𝑎𝑑𝑑) approach, and

we evaluate both on all categories of peer-based techniques.

We illustrate all our proposed techniques using the example

shown in Figure 3. It contains a configuration change D, its ctest

suite T, and a set of peer configuration changes S. Note that each

change is with respect to some default configuration and lists param-

eters whose values changed. The root-cause information specifies

the misconfigured parameter(s) that caused a ctest to fail on a con-

figuration change (e.g., only p3 caused t1 to fail on D1). Empty cells

indicate that the test passed. Thus, T has three types of orders for

D: optimal (run passing t3 last), sub-optimal (run t3 second), and

worst-case (run t3 first).

3.2.1 Techniques at the Configuration Granularity. We now discuss

TCP techniques based on peer configuration changes at different

granularity levels:

All Configurations (Conf𝑎𝑙𝑙). The Conf𝑎𝑙𝑙 set of each ctest 𝑡 (𝑃)

is simply the set of all peer configuration changes where 𝑡 failed:

Conf𝑎𝑙𝑙 (𝑡, 𝐷, 𝑆) = {𝐷 ′ ∈ 𝑆 | Fail(𝑡, 𝐷 ′)} (1)

where Fail(𝑡, 𝐷 ′) indicates that 𝑡 failed on a peer configuration

change 𝐷 ′. For the example in Figure 3, Conf𝑎𝑙𝑙 (t1, D, S) = {D1,

D2, D3, D4}, Conf𝑎𝑙𝑙 (t2, D, S) = {D1, D2, D3}, and Conf𝑎𝑙𝑙 (t3, D, S) =

{D1, D2, D3, D4, D5}. Thus, Conf𝑎𝑙𝑙𝑡𝑜𝑡 orders T as t3-t1-t2, and Conf
𝑎𝑙𝑙
𝑎𝑑𝑑

can order T as t3-t2-t1 or t3-t1-t2. According to the root causes

of D, both techniques only produce worst-case orders of T.

Conf𝑎𝑙𝑙 is change-unaware and can prioritize earlier a ctest that

failed many peer configuration changes even if they share no

changed parameter(s) with 𝐷 , degrading𝑇 ’s performance in detect-

ing the misconfigurations in the parameters changed in 𝐷 . Thus,

all the following peer-based TCP techniques are change-aware and

consider which parameters have changed for better prioritization.

Configurations Sharing Parameter Changes (Conf𝐷𝑃). The

Conf𝐷𝑃 set of each ctest 𝑡 (𝑃) restricts the set to peer configuration

455

Test-Case Prioritization for Configuration Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

T = {t1, t2, t3}

t1(Pt1), Pt1 = {p2, p3, p4, p5}

t2(Pt2), Pt2 = {p1, p6}

t3(Pt3), Pt3 = {p2, p4}

// Ctest suite

S = {D1, D2, D3, D4, D5}

D1, PD1 = {p1, p2, p3, p4}

D2, PD2 = {p1, p2, p4}

D3, PD3 = {p1, p4}

D4, PD4 = {p4, p5, p6}

D5, PD5 = {p4}

// Peer config changes

D, PD = {p1, p2, p3}

// Current config change

// Root causes of ctest failures

t1 t2 t3

D1 {p3} {p1} {p4}

D2 {p4} {p1} {p4}

D3 {p4} {p1} {p4}

D4 {p5} {p4}

D5 {p4}

D {p3} {p1}

Figure 3: An example to illustrate peer-based TCP

changes that have changed parameters in common1 with 𝐷 :

Conf𝐷𝑃 (𝑡, 𝐷, 𝑆) = {𝐷 ′ ∈ 𝑆 | 𝑃𝐷′ ∩ 𝑃𝐷 ≠ {} ∧ Fail(𝑡, 𝐷 ′)} (2)

For our example, Conf𝐷𝑃 (t1, D, S) = {D1, D2, D3}, because PD1 ∩

PD = {p1, p2, p3}, PD2∩PD = {p1, p2}, and PD3∩PD = {p1}. Similarly,

Conf𝐷𝑃 (t2, D, S) = {D1, D2, D3} and Conf𝐷𝑃 (t3, D, S) = {D1, D2,

D3}. Both Conf𝐷𝑃
𝑡𝑜𝑡 and Conf𝐷𝑃

𝑎𝑑𝑑
can produce all 6 permutations of

T because all 3 ctests have the same priority.

While more precise than Conf𝑎𝑙𝑙 , Conf𝐷𝑃 could include𝐷 ′ when

changed parameters in common between 𝐷 ′ and 𝐷 are not even

read by 𝑡 . In this way, a larger set for Conf𝐷𝑃 may not indicate

that 𝑡 is more effective in detecting misconfigurations on the cur-

rent changed parameters read by 𝑡 . Therefore, we next consider

parameter coverage information for more precise TCP.

Configurations Sharing Parameter Coverage (Conf𝑃𝐶). The

Conf𝑃𝐶 set of each ctest 𝑡 (𝑃) further restricts the set to peer con-

figuration changes that have changed parameters in common with

𝐷 and also some parameter(s) in common read by 𝑡 :

Conf𝑃𝐶 (𝑡, 𝐷, 𝑆) = {𝐷 ′ ∈ 𝑆 | 𝑃𝐷′ ∩ 𝑃𝐷 ∩ 𝑃 ≠ {} ∧ Fail(𝑡, 𝐷 ′)} (3)

For our example, Conf𝑃𝐶 (t1, D, S) = {D1, D2} because PD1 ∩PD ∩

Pt1 = {p2, p3} and PD2∩PD∩Pt1 = {p2}, while PD3∩PD∩Pt1 = {}.

Similarly, Conf𝑃𝐶 (t2, D, S) = {D1, D2, D3} and Conf𝑃𝐶 (t3, D, S) =

{D1, D2}. Both Conf𝑃𝐶𝑡𝑜𝑡 or Conf
𝑃𝐶
𝑎𝑑𝑑

can order T as t2-t1-t3 or t2-t3-

t1. Either technique has 50% probability of producing an optimal

or sub-optimal order of T, and produces no worst-case order.

Conf𝑃𝐶 may still be imprecise when the exact parameter(s) that

caused 𝑡 to fail on 𝐷 ′ are not in 𝑃𝐷′ ∩𝑃𝐷 ∩𝑃 , which happens when

the root-cause parameter(s) of 𝑡 on 𝐷 ′ are not in 𝑃𝐷 , thus not in

𝑃𝐷′ ∩ 𝑃𝐷 . In such a scenario, even if the technique prioritizes ctests

with larger Conf𝑃𝐶 , the misconfiguration detection efficiency on

𝐷 may not improve simply because the root-cause parameter(s) of

the peer configuration changes are not in 𝑃𝐷 . Therefore, we next

consider the root-cause parameter information.

Configurations Sharing Root Causes (Conf𝑅𝐶). The Conf𝑅𝐶

set of each ctest 𝑡 (𝑃) further restricts the set to peer configura-

tion changes whose root-cause misconfigured parameters are also

changed in 𝐷 :

Conf𝑅𝐶 (𝑡, 𝐷, 𝑆) = {𝐷 ′ ∈ 𝑆 | RC(𝑡, 𝐷 ′)∩𝑃𝐷 ≠ {}∧Fail(𝑡, 𝐷 ′)} (4)

RC(𝑡, 𝐷 ′) is the set of root-cause misconfigured parameter(s) that

actually caused the failure of 𝑡 in configuration change 𝐷 ′. Note

1Note that it considers only parameter names and not values.

that RC(𝑡, 𝐷 ′) ⊆ 𝑃 because a parameter must be read by 𝑡 (i.e, in

𝑃) to be a root cause of the failure of 𝑡 .

In Figure 3, Conf𝑅𝐶 (t1, D, S) = {D1} because only RC(t1, D1) ∩

PD = {p3} is non-empty. Similarly, Conf𝑅𝐶 (t2, D, S) = {D1, D2,

D3} and Conf𝑅𝐶 (t3, D, S) = {}. Conf𝑅𝐶𝑡𝑜𝑡 orders T as t2-t1-t3, and

Conf𝑅𝐶
𝑎𝑑𝑑

can order T as t2-t1-t3 or t2-t3-t1. The probability of

producing an optimal order of T is 50ś100%, and no worst-case

order is produced.

While Conf𝑅𝐶 is more precise than the earlier peer-based tech-

niques, it requires to maintain the root-cause information for all

failed peer configuration changes. Developers could record such

information while debugging misconfigurations, but such informa-

tion may not always be available (ğ4.3).

3.2.2 Techniques at the Parameter Granularity. We now discuss

our peer-based techniques based on individual parameters in peer

configurations at different precision levels. Conf𝑎𝑙𝑙 and Conf𝐷𝑃

techniques do not consider parameter coverage and thus have no

parameter-granularity counterparts.

Shared Parameter Coverage with Peers (Para𝑃𝐶). The Para𝑃𝐶

set of each ctest 𝑡 (𝑃) is the set of parameters from peer configura-

tion changes in Conf𝑃𝐶 (𝑡, 𝐷, 𝑆) described in ğ3.2.1:

Para𝑃𝐶 (𝑡, 𝐷, 𝑆) =
⋃

𝐷′∈𝑆, Fail(𝑡,𝐷′)
𝑃𝐷′ ∩ 𝑃𝐷 ∩ 𝑃 (5)

Collecting for each ctest the parameters instead of failed peer

configuration changes explores another possibility where peer-

based TCP could prioritize earlier ctests that failed on a relatively

smaller number of peer configuration changes but a larger set of

configuration parameters from the changes.

For our example, Para𝑃𝐶 (t1, D, S) = {p2, p3}, Para𝑃𝐶 (t2, D, S) =

{p1}, and Para𝑃𝐶 (t3, D, S) = {p2}. Para𝑃𝐶𝑡𝑜𝑡 orders T as t1-t2-t3

or t1-t3-t2. Para𝑃𝐶
𝑎𝑑𝑑

orders T as t1-t2-t3. The probability of pro-

ducing optimal orders of T is 50ś100%, with no worst-case order

produced, which is an overall improvement to the counterpart

(Conf𝑃𝐶) from ğ3.2.1.

SharedRootCauseswith Peers (Para𝑅𝐶).The Para𝑅𝐶 set of each

test 𝑡 (𝑃) is the set of parameters from peer configuration changes

in Conf𝑅𝐶 (𝑡, 𝐷, 𝑆) described in ğ3.2.1:

Para𝑅𝐶 (𝑡, 𝐷, 𝑆) =
⋃

𝐷′∈𝑆, Fail(𝑡,𝐷′)
RC(𝑡, 𝐷 ′) ∩ 𝑃𝐷 (6)

For our example, Para𝑅𝐶 (t1, D, S) = {p3}, Para𝑅𝐶 (t2, D, S) =

{p1}, and Para𝑅𝐶 (t3, D, S) = {}. Both Para𝑅𝐶𝑡𝑜𝑡 and Para
𝑅𝐶
𝑎𝑑𝑑

can order

T as t1-t2-t3 or t2-t1-t3. The probability of producing optimal

orders of T is thus 100%, which improves over the counterpart

(Conf𝑅𝐶) from ğ3.2.1.

3.3 Hybrid TCP

Various TCP techniques have been reported to benefit by addition-

ally considering test execution time [9, 30, 41, 50]. For example,

the cost-cognizant additional code-coverage-based technique [30],

which considers the additional code coverage per time unit for each

test, can substantially improve the additional technique in terms of

the time for detecting regression faults. Therefore, besides all the

basic TCP techniques introduced in ğ3.1ś3.2, we introduce hybrid

techniques that combine the basic techniques with test execution

time. Inspired by the prior work in cost-cognizant TCP [30, 41, 50],

456

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

0 20 40 60 80 100
% Ctest suite executed

0

50

100

Area=67%

Test-Case Order O1: t1-t2-t3

0 20 40 60 80 100
% Ctest suite executed

0

50

100

Area=67%

Test-Case Order O2: t2-t1-t3

0 20 40 60 80 100
% Ctest suite executed

0

50

100

Area=50%

Test-Case Order O3: t1-t3-t2

0 20 40 60 80 100
% Ctest suite executed

0

50

100

Area=33%

Test-Case Order O4: t3-t1-t2

0 20 40 60 80 100
% Ctest suite cost incurred

0

50

100

Area=79%

0 20 40 60 80 100
% Ctest suite cost incurred

0

50

100

Area=71%

0 20 40 60 80 100
% Ctest suite cost incurred

0

50

100

Area=54%

0 20 40 60 80 100
% Ctest suite cost incurred

0

50

100

Area=29%

Pe
rc

en
ta

ge
 o

f D
et

ec
te

d
M

isc
on

fig
ur

at
io

ns

Figure 4: An example to illustrate APMD (first row) and APMDc (second row) for four test-case orders

we define and implement two generic cost-cognizant hybrid TCP

models. We apply both models to all aforementioned TCP tech-

niques to construct hybrid TCP techniques, and evaluate their pri-

oritization effectiveness for ctests.

3.3.1 Divide-by-Time. Following the traditional cost-cognizant

TCP techniques, the Divide-by-time (T𝑑𝑖𝑣) model constructs hy-

brid TCP techniques that prioritize tests in the descending order

of the input tests’ priority values per time unit, i.e., the original

priority values divided by the test execution time. For example, a

hybrid additional code-coverage TCP technique with T𝑑𝑖𝑣 model

(CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣) prioritizes the test with the largest value of the num-

ber of uncovered methods divided by the test execution time.

3.3.2 Break-Tie-by-Time. We further study how to use time infor-

mation in the Break-tie-by-time (T𝑡𝑖𝑒) model. It constructs hybrid

TCP techniques that order tests that are łtiedž by the basic TCP

technique (i.e., multiple tests have the same priority score) in the

ascending order of their test execution time (as QTF). For example,

hybrid technique CC𝑚𝑡𝑜𝑡+T𝑡𝑖𝑒 orders the tied tests with QTF when

multiple tests have the same amount of covered methods.

4 EXPERIMENTAL SETUP

4.1 Research Questions

In this study, we aim to answer the following research questions:

• RQ1:How do basic non-peer-based TCP techniques perform

in detecting real-world misconfigurations?

• RQ2: How do hybrid non-peer-based TCP techniques per-

form compared with the basic non-peer-based techniques?

• RQ3:How do peer-based TCP techniques perform compared

to non-peer-based TCP techniques?

4.2 Metrics

Common metrics to evaluate traditional TCP techniques are Aver-

age Percentage of Faults Detected (APFD) and Average Percentage

of Faults Detected per Cost (APFDc) [75]. APFDc is a cost-aware

variant of APFD that considers the cost of test executions [9, 30].

In the context of configuration testing, however, test failures are

caused by misconfigurations and not (code) regression faults. Thus,

we adapted the definition of APFD and APFDc to derive two new

metrics for evaluating TCP techniques for configuration testing:

Average Percentage of Misconfigurations Detected (APMD) and Av-

erage Percentage of Misconfigurations Detected per Cost (APMDc).

The only difference in the definitions is that APFD and APFDc

consider code bugs, while our metrics consider misconfigurations.

Higher APMD and APMDc values (i.e., closer to 1.0) indicate all mis-

configurations are detected earlier, while lower values (i.e., closer

to 0.0) indicate all misconfigurations are detected later.

We illustrate APMD and APMDc for the following example sce-

nario. Let T = {t1, t2, t3} be a ctest suite for a configuration change

D, PD = {p1, p2}; t1 failed on p1, t2 failed on p2, and t3 passed;

the execution costs of t1, t2, and t3 are 1, 2, and 3 seconds, respec-

tively. Figure 4 illustrates the APMD and APMDc values for four

orders (i.e., O1, O2, O3, and O4) of T; from left to right, O1 and O2 are

optimal (run passing t3 last), O3 is sub-optimal (runs t3 second),

O4 is the worst-case (runs t3 first).

Average Percentage of Misconfigurations Detected (APMD).

APMD is our adaption of APFD [48] in the context of configuration

testing. Let 𝑛 be the number of configuration tests to be run, 𝑚

be the number of misconfigured parameters in the configuration

change, and 𝑇𝐹𝑖 be the position (in the order) of the first failed

configuration test that detects the 𝑖𝑡ℎ misconfigured parameter:

𝐴𝑃𝑀𝐷 = 1 −

∑𝑚
𝑖=1𝑇𝐹𝑖

𝑛 ×𝑚
+

1

2𝑛
(7)

APMD computes the area under the curve between the percent-

age of detected misconfigurations in a configuration change and

the percentage of the test suite executed, as illustrated in Figure 4.

Note that a larger area always implies faster overall detection for all

misconfigurations in the current configuration change. For example,

O1 detects 50% of the misconfigurations in D (i.e., p1) after executing

33.3% of T (i.e., t1), and O1 detects 100% of the misconfigurations

in D (i.e., p1, p2) after executing 66.7% of T (i.e., t1, t2). Thus, the

APMD value of O1 is 67% as 1 − 1+2
3·2 + 1

2·3 = 0.67 using Formula 7.

However, like APFD, APMD is cost-unaware. Although O1 and O2

have the same APMD value, O1 is actually more cost-effective than

O2 because O1 halves the cost to detect the first misconfiguration

compared to O2.

Average Percentage of Misconfigurations Detected per Cost

(APMDc). APMDc considers the cost, as in APFDc, which com-

monly uses test execution time [6, 11]. Let 𝑛,𝑚, and𝑇𝐹𝑖 be the same

457

Test-Case Prioritization for Configuration Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

as for APMD, and 𝑡 𝑗 be the execution time2 of the 𝑗𝑡ℎ configuration

test in the prioritized order:

𝐴𝑃𝑀𝐷𝑐 =

∑𝑚
𝑖=1 (

∑𝑛
𝑗=𝑇𝐹𝑖

𝑡 𝑗 −
1
2 𝑡𝑇𝐹𝑖)∑𝑛

𝑗=1 𝑡 𝑗 ×𝑚
(8)

Similar to APMD, APMDc computes the area under the curve

between the percentage of detected misconfigurations in a configu-

ration change and the percentage of its test suite cost incurred, as

illustrated in Figure 4. For example, the total cost of T is 6 seconds;

O1 detects 50% of the misconfigurations in D after incurring 17% of

the total cost (i.e., 1 second from t1), and O1 detects 100% of the

misconfigurations in D after incurring 50% of the total cost (i.e., 1

second from t1 and 2 seconds from t2). Thus, the APMDc value

of O1 is 79% as
(1+2+3− 1

2 ·1)+(2+3−
1
2 ·2)

(1+2+3) ·2
= 0.79 using Formula 8. The

APMDc value of O2 is lower than that of O1, showing that APMDc

can properly distinguish the more cost-effective order.

APMDc, like APFDc, more precisely captures the cost/time that

developers would actually experience to detect all misconfigura-

tions. Prior studies [6, 30] show that APFD can rank TCP techniques

for regression faults differently than APFDc, and thus APFD is less

reliable. We still evaluate both APMD and APMDc to check if the

same holds for TCP techniques in the new application domain of

configuration testing.

4.3 Dataset Collection

We build our evaluation dataset from the Ctest dataset [59], which

contains 66 configuration changes with misconfigurations collected

from real-world Docker images on Docker Hub [8, 71] for five

widely-used projects: HCommon, HDFS, HBase, ZooKeeper, and

Alluxio. The dataset also includes ctests for these projects. To com-

pute APMD and APMDc, we ran ctests on all configuration changes

and collected test outcomes and execution time.

We also identified the root-cause misconfigured parameter(s) for

each test failure. Root-cause information is necessary to precisely

compute APMD and APMDc for any TCP technique. (Prior research

on regression testing has likewise had to map each test failure to

the code fault(s) to compute APFD and APFDc [9, 30].) It is also

necessary for constructing peer information for some peer-based

TCP techniques (ğ3.2). Automated root-cause localization such as

delta debugging [77] is not applicable because misconfigurations

are not monotone due to configuration dependencies [7]. While

several advanced misconfiguration-diagnosis techniques exist [1, 2,

45, 65, 82, 83], we manually localized the root causes to ensure the

precision; most failure-inducing misconfigured parameters can be

easily identified as root causes by inspecting failure logs. Besides

the techniques that need root causes, all others are fully automatic.

We excluded flaky tests from the dataset using best-effort reruns [5].

Table 2 shows the version, number of configuration changes, and

average numbers of parameters, misconfigured parameters, and

ctests per change of each project.

2Note that the time for APMDc is measured when running tests on the changed
configuration, while the time used to prioritize tests (in QTF and hybrid techniques) is
from running tests prior to the change.

Table 2: Configuration Change Dataset

Project Ver. #Changes
Avg #Params

Avg #Ctests
All Misconf

HCommon 2.8.5 20 3.75 1.05 955.75

HDFS 2.8.5 16 5.19 1.31 1680.12

HBase 2.2.2 12 8.33 1.92 1254.25

ZooKeeper 3.5.6 14 6.57 1.71 74.36

Alluxio 2.1.0 4 13.75 1.25 949.00

4.4 Implementation

We implemented the main logic of all the studied TCP techniques

in Python 3. Our infrastructure for test information collection and

test prioritization is written in Java and Python.

4.4.1 Test Information Collection. We next discuss how we col-

lected the necessary test information required by the studied TCP

techniques. We used OpenClover [39] to collect code coverage at

statement and method granularity (ğ3.1.1). To collect ctest execu-

tion time (ğ3.1.1, ğ3.3), we ran each ctest 5 times prior to configura-

tion changes on the same machine, and used the averages as the

time for prioritization. Execution times reported as 0.000 by Maven

are changed to 0.001 because Maven rounds off time to 3 decimal

places. For IR data (ğ3.1.1), we implemented a parser in Java 8 with

JavaParser 3.18.0 [19] to collect tokens from test class files for all

evaluated projects. We also performed an automated step of ctest

generation with the open-sourced Ctest prototype [36] to collect in-

vocation contexts for stack-trace-based TCP techniques (ğ3.1.2). We

directly collected parameter coverage (ğ3.1.2) from open-sourced

ctests [36]. Inspired by cross validation [58], for each configuration

change in the dataset, we treated the other configuration changes

from the same project as its peer configuration changes (ğ3.2).

4.4.2 Test Prioritization. Because most of the studied TCP tech-

niques are built based on the traditional total and additional tech-

niques, we implemented generic total and additional TCP functions

following the traditional definitions. We also implemented the QTF

TCP technique according to the traditional definition.

For IR-based techniques (ğ3.1.1), the choice of retrieval model

and the approach to construct data objects can substantially affect

the performance [41, 51]. Our IR-based TCP techniques used the

BM25 retrieval model [47], as well as 𝐻𝑖𝑔ℎ𝑡𝑜𝑘𝑒𝑛 and 𝐿𝑜𝑤𝑡𝑜𝑘𝑒𝑛 for

data-object construction, which have been demonstrated to achieve

state-of-the-art performance by Peng et al. [41]. Specifically, our

IRℎ𝑖𝑔ℎ TCP technique used the 𝐻𝑖𝑔ℎ𝑡𝑜𝑘𝑒𝑛 construction, where a

document only contains identifiers from a test file. Similarly, our

IR𝑙𝑜𝑤 TCP technique used the 𝐿𝑜𝑤𝑡𝑜𝑘𝑒𝑛 construction, where a doc-

ument contains identifiers, comments, and string literals from a test

file. We collected documents at test-case level utilizing Saha et al.’s

approach [51], treating each test method as a test case, as common

in JUnit. We processed documents following standard tokenization

steps [41]. Unlike code changes, which can contain a variety of ele-

ments, a configuration change only contains names and values of

the changed parameters. To construct query for each configuration

change, we only use tokenized names of the changed parameters,

because actual configuration values are often too specific to be

found in the test code.

458

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

STadd QTF STD
add CCm

add PCadd PCD
add IRhigh IRlow CCs

add Rand PCD
tot PCtot CCm

tot CCs
tot STtot STD

tot

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AP
M

Dc
 a

nd
 A

PM
D

APMDc
APMD

Figure 5: Distribution of APMDc and APMD values for basic non-peer-based TCP techniques (sorted by average APMDc)

4.5 Experimental Procedure

To compare all the studied TCP techniques, we also implemented

a randomized TCP technique (denoted as Rand) to serve as base-

line, which shuffles ctests with a random seed. For all studied TCP

techniques with no break-tie strategy specified, ties are also bro-

ken with random seeds. Thus, to amount for different results from

randomization, we ran each TCP technique on every configuration

change 100 times, each time with a different seed. Specifically, for

each TCP technique, we did the following: (1) load the collected

configuration change dataset, i.e., ctest outcome, execution time,

root-cause analysis results under configuration changes, etc. (ğ4.3);

(2) load the test information for the current technique (ğ4.4); (3)

select a configuration change 𝐷 that has not been run under the

current technique; (4) initialize a random seed; (5) apply current

technique to order the ctest suite of 𝐷 ; (6) compute APMD and AP-

MDc of the ctest suite order based on the collected ctest outcome,

execution time, and root causes; (7) repeat steps (4)ś(6) 100 times;

(8) repeat steps (3)ś(7) on all 66 configuration changes.

In total, we evaluated 84 TCP techniques for configuration test-

ing: 16 basic non-peer-based techniques, of which 15 are described

in ğ3.1 and 1 is randomized baseline; 12 basic peer-based techniques

described in ğ3.2; 32 hybrid non-peer-based techniques, of which 16

each use T𝑑𝑖𝑣 and T𝑡𝑖𝑒 models (ğ3.3); and 24 hybrid peer-based ones.

In total, we performed 554,400 (84*66*100) unique TCP executions.

5 RESULTS AND ANALYSIS

5.1 RQ1: Basic Non-peer-Based TCP

This RQ compares non-peer-based traditional and configuration-

specific TCP techniques on APMD and APMDc. In Figure 5, each

violin plot and its embedded box plot show the distribution of

APMD or APMDc values per project per run for each TCP technique.

Each volin/box plot represents 500 (5*100) data points, for five

projects and 100 random seeds. The white bar in each box plot

shows the median, while the dot shows the (arithmetic) mean over

all the data points for each TCP technique.

We further show the Tukey HSD test [61] results in Table 3.

Tukey HSD is a post-hoc test based on the studentized range distri-

bution; it compares all possible pairs of means to find out which

specific groups’ means (compared with each other) are significantly

different. We performed this test on APMD and APMDc values to

check for statistically significant differences among the studied TCP

techniques [41]. In the table, Column "Average" shows the mean

APMDc ("A.c") and APMD ("A.") values per technique (same as the

dots in Figure 5). Importantly, Column "Group" presents the results

of the Tukey HSD test. Tukey HSD puts techniques into different

groups if they have statistically significant differences. Groups are

named by capital letters, where "A" denotes the best group, and the

performance degrades in alphabetical order. A technique having

multiple letters has performance between these letter groups. From

the results, we make the following observations.

Table 3: Results for basic

non-peer-based TCP

TCP
Average Group

A.c A. A.c A.

ST𝑎𝑑𝑑 .895 .917 A AB

QTF .890 .768 AB G

ST𝐷
𝑎𝑑𝑑

.877 .898 ABC BCD

CC𝑚
𝑎𝑑𝑑

.875 .934 ABC A

PC𝑎𝑑𝑑 .870 .883 ABC CDE

PC𝐷
𝑎𝑑𝑑

.870 .873 ABC CDE

IRℎ𝑖𝑔ℎ .865 .898 ABC BCD

IR𝑙𝑜𝑤 .859 .904 ABC ABC

CC𝑠
𝑎𝑑𝑑

.856 .924 BC AB

Rand .856 .855 BC E

PC𝐷
𝑡𝑜𝑡 .841 .869 C DE

PC𝑡𝑜𝑡 .803 .811 D F

CC𝑚𝑡𝑜𝑡 .798 .869 D DE

CC𝑠𝑡𝑜𝑡 .785 .865 D E

ST𝑡𝑜𝑡 .743 .786 E FG

ST𝐷𝑡𝑜𝑡 .728 .777 E G

5.1.1 Total vs. Additional. We

can observe that additional

techniques tend to outperform

total ones on APMD and AP-

MDc. For example, stack-trace-

based TCP has the highest

average APMDc value (0.895)

among all studied techniques

when using the additional strat-

egy, but it has one of the

lowest average APMDc values

(0.743) when using the total

strategy. Similar findings can

be observed for code-coverage-

based TCP on the APMD val-

ues, as well as other studied

techniques. The Tukey HSD

test results also confirm our ob-

servation, e.g., for APMDc, al-

most all additional techniques

are in better Tukey HSD groups

than Rand, while all total tech-

niques are inworse groups. The

key reason is that the additional strategy considers the impact of

already prioritized tests and tends to execute more diverse tests,

which can expose misconfigurations earlier. This finding is con-

sistent with prior studies on traditional regression testing, which

showed that additional techniques generally perform better than

total techniques in TCP [20, 48, 51, 79]. In summary, we are the

first to find that the additional strategy is preferred over the total

strategy even for configuration testing.

5.1.2 Comparing Coverage Criteria. From Table 3, we can observe

that traditional code coverage at method granularity is still effective

in test-case prioritization for configuration testing. For example,

the additional code-coverage-based TCP techniques outperformed

others in APMD, in which CC𝑚
𝑎𝑑𝑑

has the best performance. The

reason is that a ctest with higher code coverage is more likely

to exercise its covered configuration parameters in more project

459

Test-Case Prioritization for Configuration Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

components, and thus has a higher chance to detect potential mis-

configuration(s). Moreover, configuration-specific coverage criteria

can outperform traditional code coverage on APMDc. For example,

the additional stack-trace-based TCP (ST𝑎𝑑𝑑) is in a statistically bet-

ter group than CC𝑚
𝑎𝑑𝑑

in APMDc. The potential reason is that ctests

with larger traditional code coverage also tend to run slower; in

contrast, configuration-specific coverage can also effectively guide

misconfiguration detection, but ctests with higher configuration-

specific coverage do not necessarily run slower.

Among the configuration-specific coverage criteria, the best

stack-trace-based TCP technique (ST𝑎𝑑𝑑) usually performs better

than the best parameter-coverage-based TCP techniques (PC𝑎𝑑𝑑)

on APMD and APMDc. The reason is that different ctests read-

ing the same parameters may have greatly different invocation

contexts and thus may have different capabilities in detecting mis-

configurations. Another interesting finding is that both the best

stack-trace-based and parameter-coverage-based techniques tend

to outperform their change-aware counterparts. For example, ST𝑎𝑑𝑑
achieves 0.895 (0.917) in APMDc (APMD), while ST𝐷

𝑎𝑑𝑑
has 0.877

(0.898). The reason is that majority of configuration changes are

relatively small. Thus, the additional techniques cannot easily prior-

itize ctests with new change-aware configuration-specific coverage,

and behave as random baseline when no ctests have new coverage.

5.1.3 IR-Based TCP. Although IR-based techniques (ğ3.1.1) have

been recently claimed to be the state-of-the-art in test-case prioriti-

zation and unsafe selection for traditional regression testing [41, 51],

they never perform the best in configuration testing on APMD and

APMDc. There are several potential reasons. First, configuration

changes are usually small and less informative than code changes.

Second, unlike code changes, configuration changes have no sur-

rounding context [41]. Thus, each change query is built simply

from tokenized names of changed parameters (ğ4.4), which can

often be too ambiguous. For example, the query built from changed

parameters {dataDir, dataLogDir} is a bag of words [data, dir,

data, log, dir], which can be common in test files. Another inter-

esting finding is that IR-based techniques never perform the worst

in configuration testing. In fact, IR-based techniques are the most

stable ones: in Figure 5, the plots for IR-based techniques are more

concentrated near the median for both APMD and APMDc. The

stability across runs for each project comes from test documents

being large and diverse, so few ties are produced. Also, IR-based

techniques prioritize ctests whose documents are more related to

the names of changed parameters.

5.1.4 QTF-Based TCP. QTF has the second highest average AP-

MDc, but the absolutely lowest average APMD across all projects.

The reason is that a considerable portion of ctests are transformed

from unit tests that have rather short execution time. Thus, QTF pri-

oritizes these faster ctests first and can end up running many more

ctests than other TCP techniques before detecting the misconfigu-

rations, leading to low APMD values. However, when considering

the test cost for APMDc, QTF is much more cost-effective, because

the ctests prioritized earlier have short execution time. For example,

on HDFS, many ctests prioritized earlier cost less than 0.1 second.

5.1.5 APMD vs. APMDc. While the rankings of many TCP tech-

niques are similar by both APMD and APMDc, the diametrically

Table 4: Per-project results for basic non-peer-based TCP

TCP
HCom. HDFS HBase ZooK. Alluxio

A.c A. A.c A. A.c A. A.c A. A.c A.

ST𝑎𝑑𝑑 .990 .998 .608 .652 .971 .974 .963 .964 .941 .995

QTF .998 .990 .865 .621 .997 .963 .909 .883 .679 .385

ST𝐷
𝑎𝑑𝑑

.998 .999 .604 .646 .908 .928 .934 .923 .939 .996

CC𝑚
𝑎𝑑𝑑

.990 .999 .587 .742 .871 .945 .993 .993 .935 .993

PC𝑎𝑑𝑑 .929 .992 .726 .739 .948 .948 .935 .928 .811 .807

PC𝐷
𝑎𝑑𝑑

.995 .996 .685 .681 .947 .947 .917 .928 .807 .813

IRℎ𝑖𝑔ℎ .918 .895 .855 .887 .960 .980 .925 .925 .669 .803

IR𝑙𝑜𝑤 .934 .911 .876 .914 .904 .974 .909 .915 .672 .808

CC𝑠
𝑎𝑑𝑑

.991 .998 .520 .718 .853 .922 .993 .993 .923 .986

Rand .992 .993 .577 .578 .947 .946 .939 .938 .823 .820

PC𝐷
𝑡𝑜𝑡 .985 .993 .874 .868 .701 .685 .947 .961 .698 .837

PC𝑡𝑜𝑡 .958 .979 .647 .567 .776 .762 .948 .947 .685 .799

CC𝑚𝑡𝑜𝑡 .985 .992 .382 .660 .778 .793 .993 .993 .852 .906

CC𝑠𝑡𝑜𝑡 .986 .992 .378 .658 .776 .793 .993 .993 .793 .892

ST𝑡𝑜𝑡 .985 .985 .230 .308 .781 .779 .986 .991 .730 .866

ST𝐷𝑡𝑜𝑡 .978 .992 .268 .342 .780 .774 .940 .917 .675 .860

opposite ranking of QTF when using APMD and APMDc indicates

that APMD is not appropriate and can be misleading for configura-

tion testing. This finding is consistent with prior work on traditional

regression testing: APFD has been shown to be misleading in com-

paring TCP techniques because it does not consider test execution

time [6, 30]. Therefore, in the following sections, we only focus

on the APMDc results. Moreover, the high effectiveness of QTF in

APMDc also inspired us to combine the basic techniques with test

execution time information for hybrid techniques (ğ3.3).

5.1.6 Per-Project Results. Table 4 further presents the detailed av-

erage results for each studied project. The main findingsÐsuch as

additional is better than total, and QTF is competitiveÐfrom the

overall distribution of APMD/APMDc across all projects are also

similar for individual projects. Thus, we do not show per-project

results in the other RQs due to space limit and results being similar.

5.2 RQ2: Hybrid Non-peer-Based TCP

This RQ evaluates the effectiveness of hybrid non-peer-based TCP

techniques with two hybrid models discussed in ğ3.3. Figure 6

shows the distribution of APMDc values for each hybrid non-peer-

based technique: the names of corresponding basic non-peer-based

techniques are shown on the x-axis, while the green/orange violin

plots show the distribution of APMDc values for Divide-by-time

(T𝑑𝑖𝑣)/Break-tie-by-time (T𝑡𝑖𝑒) hybrid non-peer-based TCP tech-

niques. Table 5 shows the overall average APMDc values and Tukey

HSD groups for each TCP technique under the two hybrid models.

Note that QTF+T𝑑𝑖𝑣 serves as a baseline for T𝑑𝑖𝑣 hybrid techniquesÐ

it is effectively RandÐwhile Rand+T𝑡𝑖𝑒 serves as a baseline for T𝑡𝑖𝑒
hybrid techniquesÐit is literally Rand.

5.2.1 Hybrid vs. Basic Non-peer-Based TCP. Both hybrid models

improved the average APMDc values across projects on most of

the basic non-peer-based techniques. For example, excluding the

baselines, the average APMDc values over all basic non-peer-based

techniques is 0.838 (Table 3), while the same values for T𝑡𝑖𝑒 and

460

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

CCm
add CCs

add STDtot CCm
tot PCtot STtot STadd STDadd PCD

tot CCs
tot IRhigh IRlow Rand PCadd PCD

add QTF
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

AP
M
Dc

Tdiv
Ttie

Figure 6: Distribution of APMDc values for hybrid non-peer-based TCP techniques (sorted by average APMDc from T𝑑𝑖𝑣)

T𝑑𝑖𝑣 hybrid techniques are 0.848 and 0.905, respectively. Also, the

best basic non-peer-based technique (ST𝑎𝑑𝑑) achieves an APMDc

value of 0.895, while the best hybrid non-peer-based technique,

CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣 , achieves an APMDc of 0.961. CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣 performs

much better than CC𝑚
𝑎𝑑𝑑

: CC𝑚
𝑎𝑑𝑑

favors ctests with larger code cov-

erage but they also tend to run slower, while CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣 considers

code coverage per time unit cost (ğ3.3.1), so CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣 makes

a better trade-off between the coverage and cost information. In

summary, this finding indicates that the hybrid models can substan-

tially boost the basic non-peer-based TCP techniques. This finding

was previously reported for traditional regression testing [41] but

not for configuration testing.

Table 5: Results for hybrid

non-peer-based TCP

TCP
Average Group

T𝑑𝑖𝑣 T𝑡𝑖𝑒 T𝑑𝑖𝑣 T𝑡𝑖𝑒

CC𝑚
𝑎𝑑𝑑

.961 .890 A BC

CC𝑠
𝑎𝑑𝑑

.958 .858 A CD

ST𝐷𝑡𝑜𝑡 .924 .723 B G

CC𝑚𝑡𝑜𝑡 .920 .798 BC F

PC𝑡𝑜𝑡 .919 .813 BC EF

ST𝑡𝑜𝑡 .915 .743 BCD G

ST𝑎𝑑𝑑 .908 .928 BCDE A

ST𝐷
𝑎𝑑𝑑

.908 .922 BCDE AB

PC𝐷
𝑡𝑜𝑡 .907 .833 BCDE DE

CC𝑠𝑡𝑜𝑡 .898 .785 CDEF F

IRℎ𝑖𝑔ℎ .893 .865 DEF CD

IR𝑙𝑜𝑤 .893 .859 DEF CD

Rand .886 .856 EFG CD

PC𝑎𝑑𝑑 .876 .909 FG AB

PC𝐷
𝑎𝑑𝑑

.865 .889 GH BC

QTF .850 .890 H BC

5.2.2 Divide- vs. Break-Tie-by-

Time. Table 5 shows that T𝑑𝑖𝑣
hybrid techniques overall per-

form better than T𝑡𝑖𝑒 hybrid

techniques. The average AP-

MDc values range from 0.850 to

0.961 for T𝑑𝑖𝑣 , while they range

from 0.723 to 0.928 for T𝑡𝑖𝑒 . In-

terestingly, the additional TCP

techniques with configuration-

specific coverage tend to per-

form better with T𝑡𝑖𝑒 than

with T𝑑𝑖𝑣 , opposite to our over-

all finding. The reason is that

ctests usually do not read as

many (changed) configuration

parameters as they cover tradi-

tional methods or statements;

when using the additional strat-

egy on configuration-specific

coverage, the basic priority

scores of ctests quickly become

0 (already prioritized ctests cover all parameters, and yet-to-

prioritize ctests cannot cover any more parameters), thus making

T𝑑𝑖𝑣 effectively become random. For example, on HDFS, PC𝐷
𝑎𝑑𝑑

cannot provide additional coverage after prioritizing 2ś4 ctests. In

contrast, the T𝑡𝑖𝑒 hybrid model can break such ties by ordering the

tied tests in the ascending order of their execution time (ğ3.3), thus

outperforming T𝑑𝑖𝑣 in such cases.

5.2.3 Total vs. Additional. With the T𝑡𝑖𝑒 model, the additional hy-

brid techniques outperform all the total ones on average APMDc

values. This finding is consistent with our finding for the basic non-

peer-based techniques in ğ5.1.1. Interestingly, this no longer holds

for the T𝑑𝑖𝑣 model. Although the very best T𝑑𝑖𝑣 hybrid techniques

(CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣 and CC𝑠
𝑎𝑑𝑑

+T𝑑𝑖𝑣) are additional, all other additional

techniques under-perform their total counterparts with the T𝑑𝑖𝑣
hybrid model. The reason is that the priority of ctests can easily

become 0 when using the additional strategy, making T𝑑𝑖𝑣 behave

as random (ğ5.2.2), while the total strategy can still effectively prior-

itize different ctests. Thus, the T𝑑𝑖𝑣 hybrid model is more effective

for total TCP techniques that seldom encounter 0 priority scores.

Also, T𝑑𝑖𝑣 can be more effective for basic criteria that include more

elements and are more diverse, such as traditional code coverage.

5.3 RQ3: Peer-Based TCP

This RQ evaluates the effectiveness of both basic (ğ3.2) and hybrid

(ğ3.3) peer-based TCP techniques for configuration testing. Figure 7

shows the distribution of APMDc values for all the evaluated peer-

based techniques. Table 6 further shows the average APMDc values

and the Tukey HSD groups for these techniques.

5.3.1 Peer-Based vs. Non-peer-Based TCP. According to Table 6, 7

of the 12 basic peer-based techniques outperform the best non-peer-

based technique (i.e., CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣) by average APMDc. Moreover,

as seen in Figure 7, all APMDc values for all peer-based techniques

are well above 0.65, while multiple basic and hybrid non-peer-

based techniques have APMDc values well below 0.65 even up to

0.2 (Figure 5 and Figure 6), indicating the effectiveness and stability

of the basic peer-based techniques for configuration testing.

Para𝑃𝐶
𝑎𝑑𝑑

and Para𝑅𝐶
𝑎𝑑𝑑

are statistically significantly better than

other basic peer-based techniques, as they are both within the best

Tukey HSD group "A". These two techniques are not statistically dif-

ferent, although Para𝑃𝐶
𝑎𝑑𝑑

has a slightly higher average APMDc. This

finding is surprising as Para𝑃𝐶
𝑎𝑑𝑑

requires no root-cause information,

but still performs as well as Para𝑅𝐶
𝑎𝑑𝑑

, which requires such informa-

tion (ğ3.2). The reason is that on some projects (e.g., ZooKeeper),

many ctests have similar Para𝑅𝐶 , so the additional strategy suffers

the same problem as in ğ5.2.3. Meanwhile, Para𝑃𝐶 values of these

ctests are more diverse (and larger than their Para𝑅𝐶 values).

Different from the results for the non-peer-based techniques, the

hybrid models have only limited effectiveness for the peer-based

techniques. The T𝑑𝑖𝑣 model can only improve the effectiveness for

the inferior peer-based techniques. For example, Conf𝑎𝑙𝑙𝑡𝑜𝑡 , the worst

basic technique, is improved from 0.899 into 0.945, while the two

best basic techniques (Para𝑃𝐶
𝑎𝑑𝑑

and Para𝑅𝐶
𝑎𝑑𝑑

) have almost no change.

461

Test-Case Prioritization for Configuration Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

ParaPCadd ParaRCadd ParaRCtot ConfRCadd ConfPCadd Confalladd ConfDPadd ParaPCtot ConfRCtot ConfPCtot Confalltot ConfDPtot
0.65

0.70

0.80

0.90

1.00

AP
M
Dc

Basic
Tdiv
Ttie

Figure 7: Distribution of APMDc values for peer-based TCP techniques (sorted by average APMDc from Basic)

Table 6: Results for peer-based TCP techniques

TCP
Average Group

Basic T𝑑𝑖𝑣 T𝑡𝑖𝑒 Basic T𝑑𝑖𝑣 T𝑡𝑖𝑒

Para𝑃𝐶
𝑎𝑑𝑑

.985 .983 .991 A AB A

Para𝑅𝐶
𝑎𝑑𝑑

.984 .985 .979 A A A

Para𝑅𝐶
𝑡𝑜𝑡

.976 .976 .977 AB B A

Conf𝑅𝐶
𝑎𝑑𝑑

.968 .967 .977 B C A

Conf𝑃𝐶
𝑎𝑑𝑑

.967 .966 .977 B C A

Conf𝑎𝑙𝑙
𝑎𝑑𝑑

.964 .960 .977 B C A

Conf𝐷𝑃

𝑎𝑑𝑑
.962 .960 .977 B C A

Para𝑃𝐶
𝑡𝑜𝑡

.926 .952 .926 C D B

Conf𝑅𝐶
𝑡𝑜𝑡

.918 .968 .924 C C B

Conf𝑃𝐶
𝑡𝑜𝑡

.899 .949 .902 D D C

Conf𝑎𝑙𝑙
𝑡𝑜𝑡

.899 .945 .899 D D C

Conf𝐷𝑃
𝑡𝑜𝑡

.899 .945 .899 D D C

The T𝑡𝑖𝑒 model can only slightly improve the effectiveness of the

superior peer-based techniques. For example, Para𝑃𝐶
𝑎𝑑𝑑

changes from

0.985 to 0.991, while the inferior techniques (such as Conf𝑎𝑙𝑙𝑡𝑜𝑡) do

not change at all. The reason is that total techniques usually have

fewer ties, making T𝑑𝑖𝑣 more effective than T𝑡𝑖𝑒 .

5.3.2 Configuration vs. Parameter Granularity. Using both addi-

tional and total strategies, techniques at the parameter granularity

havemostly outperformed techniques at the configuration granular-

ity. For example, as seen from Table 6, with the additional strategy,

the basic techniques at the parameter granularity (Para𝑃𝐶 , Para𝑅𝐶)

are both in group "A", while all basic techniques at the configuration

granularity (Conf𝑎𝑙𝑙 , Conf𝐷𝑃 , Conf𝑃𝐶 , Conf𝑅𝐶) are in group "B".

Similarly, with the total strategy, the basic Para𝑅𝐶and Para𝑃𝐶 are

in groups "AB" and "C", respectively, while all basic techniques at

configuration granularity are within groups "C" or "D". This result

is expected as the parameter granularity captures parameter-level

information from other failed peer configuration changes, while

the configuration granularity is more coarse-grained (ğ3.2.2).

5.3.3 Total vs. Additional. Similar to the results for the non-peer-

based techniques, the additional strategy generally performs better

than the total strategy for the basic and T𝑡𝑖𝑒 peer-based techniques.

Except that Table 6 shows the basic Para𝑅𝐶𝑡𝑜𝑡 is a total technique

Table 7: Results for the best TCP techniques

TCP HCom. HDFS HBase ZooK. Alluxio Avg Group

Para𝑃𝐶
𝑎𝑑𝑑

+T𝑡𝑖𝑒 .999 .988 .999 .971 .998 .991 A

Para𝑃𝐶
𝑎𝑑𝑑

.995 .982 .990 .975 .981 .985 A

CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣 1.00 .886 .989 .946 .983 .961 B

ST𝑎𝑑𝑑 .990 .608 .971 .963 .941 .895 C

QTF .998 .865 .997 .909 .679 .890 C

Rand .992 .577 .947 .939 .823 .856 D

at the parameter granularity that performed slightly better than

basic additional techniques at the configuration granularity, be-

cause Para𝑅𝐶 leverages more fine-grained information about peer

misconfigured parameters to guide more effective prioritization.

5.4 Summary

We compare the best techniques from each of the basic/hybrid peer-

based/non-peer-based categories, i.e., ST𝑎𝑑𝑑 (basic non-peer-based),

CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣 (hybrid non-peer-based), Para𝑃𝐶
𝑎𝑑𝑑

(basic peer-based),

and Para𝑃𝐶
𝑎𝑑𝑑

+T𝑡𝑖𝑒 (hybrid peer-based). We also include Rand and

QTF as the baselines. Note that the QTF technique is rather com-

petitive as it outperforms almost all the basic non-peer-based TCP

techniques (Table 3). Table 7 presents the main comparison results.

We can observe that all four techniques significantly outperform

the Rand baseline, and three of them significantly outperform the

QTF baseline. In summary: (1) CC𝑚
𝑎𝑑𝑑

+T𝑑𝑖𝑣 is the best non-peer-

based technique and recommended when no peer configuration

information is available, (2) Para𝑃𝐶
𝑎𝑑𝑑

and its T𝑡𝑖𝑒 counterpart are the

best techniques (i.e., both in group "A") and recommended when

peer configuration information is available.

5.5 Threats to Validity

External validity. The threats to external validity mainly lie in

projects and dataset used in this work. To reduce such threats, we

directly use all the real-world projects and configuration changes

from the Ctest dataset [36]. However, our evaluation is only based

on ctests, which cannot represent all possible types of configuration

tests. Future work should consider more diverse datasets and other

types of configuration tests.

Internal validity. The threats to internal validity mainly lie in

the potential bugs in our techniques and experimental scripts. To

reduce such threats, the authors regularly check the results and

462

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

code to eliminate potential bugs. Furthermore, we released all our

dataset and code to benefit the community.

Construct validity. The threats to construct validity mainly lie in

the metrics used in our study. To reduce such threats, we adapt two

widely-used metrics for evaluating TCP techniques (APFD and its

cost-aware variant APFDc) and propose new metrics (APMD and

its cost-aware variant APMDc) for configuration testing.

6 DISCUSSION AND FUTUREWORK

To better measure the overall detection time for all the misconfig-

ured parameters within each configuration change, we introduced

APMDc (together with APMD) as our main evaluation metric. How-

ever, APMDc may not be preferred for practitioners with more

interest in how TCP affects the time to detect misconfigurations.

Thus, we also relate changes to APMDc with changes to the total

test time. APMDc captures time to detect all misconfigured param-

eters in a configuration change. If there is only one misconfigured

parameter, then 0.1 increase in APMDc maps to exactly 10% reduc-

tion of total time. If there are more misconfigured parameters, 0.1

may map to less or more than 10% time reduction to detect either

the first misconfigured parameter or all misconfigured parameters.

For our studied projects, 0.1 increase in APMDc maps to from 7.86%

(HCommon) to 21.93% (HBase) average time reduction to detect

all misconfigured parameters. The reduction can be even larger to

find the first misconfigured parameter, e.g., 0.1 increase in APMDc

maps to 53.38% (Alluxio) average time reduction.

Our study also points to several directions for future work. Since

historical data were reported to be useful in traditional test-case pri-

oritization [10, 25, 41, 50], we could leverage historical configuration

change test results from earlier code versions to develop history-

based TCP techniques for configuration testing. We also consider

improving the current configuration-specific TCP techniques and

evaluating them on larger datasets. For example, we can fuse deeper

context information (e.g., how ctests use their parameters acquired

from configuration taint analysis) into stack-trace-based TCP tech-

niques, or improve peer-based TCP techniques by combining more

data from peer configurations (e.g., test time, failure stack traces).

Furthermore, we plan to understand the impact of software evo-

lution on the performance of our evaluated TCP techniques for

configuration testing. Although prior work has shown that the

traditional prioritization techniques remain robust over multiple

system releases [15], this conclusion may not hold in the context

of configuration testing. Configurations and configuration-related

code are updated frequently [60, 84], so certain types of test infor-

mation may be more sensitive to software evolution. For example,

data from old peer configuration changes could be less accurate in

guiding peer-based TCP techniques on recent system releases.

We only evaluate the performance of TCP techniques on con-

figuration changes. However, sometimes software developers may

change both configuration and code in the same commit. In such

context, a TCP technique should consider both configuration and

code information, and balance the effectiveness in speeding up

both misconfiguration and code fault detection. We plan to study

how the mixture of configuration and code testing can shift the

performance of our evaluated TCP techniques, and understand how

to develop competitive TCP techniques in such context.

7 RELATED WORK

We have already introduced the background on configuration test-

ing (ğ2) and discussed the related test-case prioritization (TCP)

techniques (ğ3), so this section briefly discusses the basics and ap-

plications of TCP. TCP techniques were initially proposed to reorder

test executions for traditional software systems (e.g., common C

and Java applications) to speed up detection of regression faults dur-

ing software evolution. To date, a large number of code-coverage-

based TCP techniques have been proposed for such purpose, includ-

ing techniques based on traditional total/additional heuristics [28],

adaptive random testing [20], genetic algorithms [26], and con-

straint solving [80]. More recently, researchers have also looked

into TCP techniques that do not require code-coverage informa-

tion, e.g., techniques based on information retrieval [41] or static

program analysis [29]. Interestingly, although more and more TCP

techniques have been proposed, the traditional additional technique

and its cost-cognizant variant (e.g., hybrid with Divide-by-time)

have still remained among the most effective TCP techniques [6].

Besides the traditional application scenarios, TCP has also been

applied to various other scenarios, e.g., mutation testing [81], fault

localization [13], and automated program repair [12, 27, 43]. More-

over, researchers have applied TCP techniques for testing config-

urable systems [44, 57]. However, they still target the traditional

regression testing problem, i.e., detecting regression faults caused

by code changes, while also considering prioritizing the potential

configurations that may likely expose regression faults. In contrast,

this paper makes the first attempt to apply TCP for speeding up

misconfiguration detection for configuration testing.

8 CONCLUSION

We have performed the first extensive study of TCP for config-

uration testing. We have implemented 84 traditional and novel

ctest-specific TCP techniques. The experimental results on five pop-

ular cloud projects demonstrate that TCP can substantially speed

up misconfiguration detection. We have also analyzed the impact

of various controllable factors for applying TCP in configuration

testing, including coverage criteria, hybrid models, total/additional

strategies, peer-data granularities, and study metrics. In sum, our

study reveals various practical guidelines for applying TCP in con-

figuration testing, including: (1) among the basic TCP techniques,

QTF is surprisingly competitive and often outperforms sophisti-

cated techniques (based on code coverage or IR) and even some

ctest-specific techniques (based on parameter coverage or stack

traces), (2) hybrid TCP techniques (which enhance basic techniques

with text execution cost information) can boost the performance of

most basic techniques, and (3) peer-based TCP techniques (which

leverage peer configuration data for better prioritization) can sub-

stantially outperform all other studied TCP techniques.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feedback.

This work was partially supported by NSF grants CCF-1763788,

1763906, 1816615, 1942430, 2029049, and CNS-1740916, 1956007. We

also acknowledge support for research on regression testing from

Facebook, Futurewei, and Google; a Facebook Distributed Systems

Research award; Microsoft Azure credits; and Google Cloud credits.

463

Test-Case Prioritization for Configuration Testing ISSTA ’21, July 11–17, 2021, Virtual, Denmark

REFERENCES
[1] Mona Attariyan, Michael Chow, and Jason Flinn. 2012. X-ray: Automating Root-

Cause Diagnosis of Performance Anomalies in Production Software. In OSDI.
[2] Mona Attariyan and Jason Flinn. 2010. Automating Configuration Troubleshoot-

ing with Dynamic Information Flow Analysis. In OSDI.
[3] Luiz André Barroso, Urs Hölzle, and Parthasarathy Ranganathan. 2018. The

Datacenter as a Computer: Designing Warehouse-Scale Machines. Morgan and
Claypool Publishers. https://doi.org/10.2200/S00874ED3V01Y201809CAC046

[4] Salman Baset, Sahil Suneja, Nilton Bila, Ozan Tuncer, and Canturk Isci. 2017.
Usable Declarative Configuration Specification and Validation for Applications,
Systems, and Cloud. In Middleware. https://doi.org/10.1145/3154448.3154453

[5] Jonathan Bell, Owolabi Legunsen, Michael Hilton, Lamyaa Eloussi, Tifany Yung,
and Darko Marinov. 2018. DeFlaker: Automatically Detecting Flaky Tests. In
ICSE. https://doi.org/10.1145/3180155.3180164

[6] Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan
Hao, and Lu Zhang. 2018. Optimizing Test Prioritization via Test Distribution
Analysis. In ESEC/FSE. https://doi.org/10.1145/3236024.3236053

[7] Qingrong Chen, Teng Wang, Owolabi Legunsen, Shanshan Li, and Tianyin Xu.
2020. Understanding and Discovering Software Configuration Dependencies in
Cloud and Datacenter Systems. In ESEC/FSE. https://doi.org/10.1145/3368089.
3409727

[8] Docker Hub 2020. Docker Hub. https://www.docker.com/products/docker-hub.
[9] Sebastian Elbaum, AlexeyMalishevsky, andGregg Rothermel. 2001. Incorporating

Varying Test Costs and Fault Severities into Test Case Prioritization. In ICSE.
https://doi.org/10.1109/ICSE.2001.919106

[10] Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In FSE. https://doi.org/10.1145/2635868.2635910

[11] Michael G. Epitropakis, Shin Yoo, Mark Harman, and Edmund K Burke. 2015.
Empirical Evaluation of Pareto Efficient Multi-Objective Regression Test Case
Prioritisation. In ISSTA. https://doi.org/10.1145/2771783.2771788

[12] Ali Ghanbari, Samuel Benton, and Lingming Zhang. 2019. Practical Program
Repair via Bytecode Mutation. In ISSTA. https://doi.org/10.1145/3293882.3330559

[13] Alberto Gonzalez-Sanchez, Eric Piel, Hans-Gerhard Gross, and Arjan JC van
Gemund. 2010. Prioritizing Tests for Software Fault Localization. In QSIC. https:
//doi.org/10.1109/QSIC.2010.28

[14] Haryadi S. Gunawi, Mingzhe Hao, Riza O. Suminto, Agung Laksono, Anang D.
Satria, Jeffry Adityatama, and Kurnia J. Eliazar. 2016. Why Does the Cloud
Stop Computing? Lessons from Hundreds of Service Outages. In SoCC. https:
//doi.org/10.1145/2987550.2987583

[15] Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing White-Box and Black-Box Test Prioritization. In ICSE. https:
//doi.org/10.1145/2884781.2884791

[16] Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques Klein, Patrick Hey-
mans, and Yves Le Traon. 2014. Bypassing the Combinatorial Explosion: Using
Similarity to Generate and Prioritize T-Wise Test Configurations for Software
Product Lines. TSE 40, 7 (2014). https://doi.org/10.1109/TSE.2014.2327020

[17] Peng Huang, William J. Bolosky, Abhishek Sigh, and Yuanyuan Zhou. 2015. Con-
fValley: A Systematic Configuration Validation Framework for Cloud Services.
In EuroSys. https://doi.org/10.1145/2741948.2741963

[18] Qiang Huang, Helen J. Wang, and Nikita Borisov. 2005. Privacy-Preserving
Friends Troubleshooting Network. In NDSS.

[19] JavaParser 2020. JavaParser. https://javaparser.org/about.html.
[20] Bo Jiang, Zhenyu Zhang,Wing Kwong Chan, and TH Tse. 2009. Adaptive Random

Test Case Prioritization. In ASE. https://doi.org/10.1109/ASE.2009.77
[21] Robert Johnson. 2010. More Details on Today’s Outage. http://www.facebook.

com/note.php?note_id=431441338919.
[22] Lorenzo Keller, Prasang Upadhyaya, and George Candea. 2008. ConfErr: A

Tool for Assessing Resilience to Human Configuration Errors. In DSN. https:
//doi.org/10.1109/DSN.2008.4630084

[23] Stuart Kendrick. 2012. What Takes Us Down? USENIX ;login: 37, 5 (2012).
[24] Chang Hwan Peter Kim, Darko Marinov, Sarfraz Khurshid, Don Batory, Sab-

rina Souto, Paulo Barros, and Marcelo D’Amorim. 2013. SPLat: Lightweight
Dynamic Analysis for Reducing Combinatorics in Testing Configurable Systems.
In ESEC/FSE. https://doi.org/10.1145/2491411.2491459

[25] Jung-Min Kim and Adam Porter. 2002. A History-Based Test Prioritization
Technique for Regression Testing in Resource Constrained Environments. In
ICSE. https://doi.org/10.1145/581339.581357

[26] Zheng Li, Mark Harman, and Robert M Hierons. 2007. Search Algorithms for
Regression Test Case Prioritization. TSE 33, 4 (2007). https://doi.org/10.1109/
TSE.2007.38

[27] Yiling Lou, Samuel Benton, Dan Hao, Lu Zhang, and Lingming Zhang. 2021. How
Does Regression Test Selection Affect Program Repair? An Extensive Study on 2
Million Patches. arXiv:2105.07311 (2021).

[28] Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan Zhou,
and Lu Zhang. 2016. How Does Regression Test Prioritization Perform in Real-
World Software Evolution?. In ICSE. https://doi.org/10.1145/2884781.2884874

[29] Qi Luo, Kevin Moran, Lingming Zhang, and Denys Poshyvanyk. 2018. How
do Static and Dynamic Test Case Prioritization Techniques Perform on Modern
Software Systems? An Extensive Study on GitHub Projects. TSE 45, 11 (2018).
https://doi.org/10.1109/TSE.2018.2822270

[30] Alexey G. Malishevsky, Joseph R Ruthruff, Gregg Rothermel, and Sebastian
Elbaum. 2006. Cost-Cognizant Test Case Prioritization. Technical Report. TR-UNL-
CSE-2006-0004, University of Nebraska-Lincoln.

[31] Ben Maurer. 2015. Fail at Scale: Reliability in the Face of Rapid Change. CACM
58, 11 (2015). https://doi.org/10.1145/2838344.2839461

[32] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and Sven Apel.
2016. A Comparison of 10 Sampling Algorithms for Configurable Systems. In
ICSE. https://doi.org/10.1145/2884781.2884793

[33] Sonu Mehta, Ranjita Bhagwan, Rahul Kumar, B. Ashok, Chetan Bansal, Chandra
Maddila, Christian Bird, Sumit Asthana, and Aditya Kumar. 2020. Rex: Preventing
Bugs and Misconfiguration in Large Services using Correlated Change Analysis.
In NSDI.

[34] Mukelabai Mukelabai, Damir Nešić, Salome Maro, Thorsten Berger, and Jan-
Philipp Steghöfer. 2018. Tackling Combinatorial Explosion: A Study of Industrial
Needs and Practices for Analyzing Highly Configurable Systems. In ASE. https:
//doi.org/10.1145/3238147.3238201

[35] Kiran Nagaraja, Fábio Oliveira, Ricardo Bianchini, Richard P. Martin, and Thu D.
Nguyen. 2004. Understanding and Dealing with Operator Mistakes in Internet
Services. In OSDI.

[36] openctest 2020. openctest. https://github.com/xlab-uiuc/openctest.
[37] David Oppenheimer, Archana Ganapathi, and David A. Patterson. 2003. Why Do

Internet Services Fail, and What Can Be Done About It?. In USITS.
[38] Noam Palatin, Arie Leizarowitz, Assaf Schuster, and Ran Wolff. 2006. Mining

for Misconfigured Machines in Grid Systems. In KDD. https://doi.org/10.1145/
1150402.1150488

[39] Marek Parfianowicz and Grzegorz Lewandowski. 2017ś2018. OpenClover. https:
//openclover.org.

[40] David Paterson, José Campos, Rui Abreu, Gregory M. Kapfhammer, Gordon
Fraser, and PhilMcMinn. 2019. An Empirical Study on the Use of Defect Prediction
for Test Case Prioritization. In ICST. https://doi.org/10.1109/ICST.2019.00041

[41] Qianyang Peng, August Shi, and Lingming Zhang. 2020. Empirically Revisiting
and Enhancing IR-Based Test-Case Prioritization. In ISSTA. https://doi.org/10.
1145/3395363.3397383

[42] Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-Rotaru, Mingshi Wang,
Liyuan Zhang, and Navendu Jain. 2015. ConfSeer: Leveraging Customer Support
Knowledge Bases for Automated Misconfiguration Detection. In VLDB. https:
//doi.org/10.14778/2824032.2824079

[43] Yuhua Qi, Xiaoguang Mao, and Yan Lei. 2013. Efficient Automated Program
Repair Through Fault-Recorded Testing Prioritization. In ICSM. https://doi.org/
10.1109/ICSM.2013.29

[44] Xiao Qu, Myra B. Cohen, and Gregg Rothermel. 2008. Configuration-Aware
Regression Testing: An Empirical Study of Sampling and Prioritization. In ISSTA.
https://doi.org/10.1145/1390630.1390641

[45] Ariel Rabkin and Randy Katz. 2011. Precomputing Possible Configuration Error
Diagnosis. In ASE. https://doi.org/10.1109/ASE.2011.6100053

[46] Ariel Rabkin and Randy Katz. 2013. How Hadoop Clusters Break. IEEE Software
30, 4 (2013). https://doi.org/10.1109/MS.2012.73

[47] Stephen E. Robertson, Steve Walker, and Micheline Hancock-Beaulieu. 2000.
Experimentation as a Way of Life: Okapi at TREC. Inf. Process. Manag. 36, 1
(2000). https://doi.org/10.1016/S0306-4573(99)00046-1

[48] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test Case Prioritization: An Empirical Study. In ICSM. https://doi.org/10.1109/
ICSM.1999.792604

[49] Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold.
2001. Prioritizing Test Cases for Regression Testing. TSE 27, 10 (2001). https:
//doi.org/10.1145/347324.348910

[50] David Saff and Michael D. Ernst. 2003. Reducing Wasted Development Time via
Continuous Testing. In ISSRE. https://doi.org/10.1109/ISSRE.2003.1251050

[51] Ripon K. Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E. Perry. 2015.
An Information Retrieval Approach for Regression Test Prioritization Based on
Program Changes. In ICSE. https://doi.org/10.1109/ICSE.2015.47

[52] Gerard Salton and Christopher Buckley. 1988. Term-Weighting Approaches in
Automatic Text Retrieval. Inf. Process. Manag. 24, 5 (1988). https://doi.org/10.
1016/0306-4573(88)90021-0

[53] Mark Santolucito, Ennan Zhai, Rahul Dhodapkar, Aaron Shim, and Ruzica Piskac.
2017. Synthesizing Configuration File Specifications with Association Rule
Learning. In OOPSLA. https://doi.org/10.1145/3133888

[54] Mark Santolucito, Ennan Zhai, and Ruzica Piskac. 2016. Probabilistic Automated
Language Learning for Configuration Files. In CAV. https://doi.org/10.1007/978-
3-319-41540-6_5

[55] Alex Sherman, Phil Lisiecki, Andy Berkheimer, and Joel Wein. 2005. ACMS:
Akamai Configuration Management System. In NSDI.

[56] Jonathan Shieber. 2019. Facebook Blames a Server Configuration Change for
Yesterday’s Outage. https://techcrunch.com/2019/03/14/facebook-blames-a-
misconfigured-server-for-yesterdays-outage.

464

https://doi.org/10.2200/S00874ED3V01Y201809CAC046
https://doi.org/10.1145/3154448.3154453
https://doi.org/10.1145/3180155.3180164
https://doi.org/10.1145/3236024.3236053
https://doi.org/10.1145/3368089.3409727
https://doi.org/10.1145/3368089.3409727
https://www.docker.com/products/docker-hub
https://doi.org/10.1109/ICSE.2001.919106
https://doi.org/10.1145/2635868.2635910
https://doi.org/10.1145/2771783.2771788
https://doi.org/10.1145/3293882.3330559
https://doi.org/10.1109/QSIC.2010.28
https://doi.org/10.1109/QSIC.2010.28
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2987550.2987583
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.1145/2884781.2884791
https://doi.org/10.1109/TSE.2014.2327020
https://doi.org/10.1145/2741948.2741963
https://javaparser.org/about.html
https://doi.org/10.1109/ASE.2009.77
http://www.facebook.com/note.php?note_id=431441338919
http://www.facebook.com/note.php?note_id=431441338919
https://doi.org/10.1109/DSN.2008.4630084
https://doi.org/10.1109/DSN.2008.4630084
https://doi.org/10.1145/2491411.2491459
https://doi.org/10.1145/581339.581357
https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1109/TSE.2007.38
https://doi.org/10.1145/2884781.2884874
https://doi.org/10.1109/TSE.2018.2822270
https://doi.org/10.1145/2838344.2839461
https://doi.org/10.1145/2884781.2884793
https://doi.org/10.1145/3238147.3238201
https://doi.org/10.1145/3238147.3238201
https://github.com/xlab-uiuc/openctest
https://doi.org/10.1145/1150402.1150488
https://doi.org/10.1145/1150402.1150488
https://openclover.org
https://openclover.org
https://doi.org/10.1109/ICST.2019.00041
https://doi.org/10.1145/3395363.3397383
https://doi.org/10.1145/3395363.3397383
https://doi.org/10.14778/2824032.2824079
https://doi.org/10.14778/2824032.2824079
https://doi.org/10.1109/ICSM.2013.29
https://doi.org/10.1109/ICSM.2013.29
https://doi.org/10.1145/1390630.1390641
https://doi.org/10.1109/ASE.2011.6100053
https://doi.org/10.1109/MS.2012.73
https://doi.org/10.1016/S0306-4573(99)00046-1
https://doi.org/10.1109/ICSM.1999.792604
https://doi.org/10.1109/ICSM.1999.792604
https://doi.org/10.1145/347324.348910
https://doi.org/10.1145/347324.348910
https://doi.org/10.1109/ISSRE.2003.1251050
https://doi.org/10.1109/ICSE.2015.47
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1016/0306-4573(88)90021-0
https://doi.org/10.1145/3133888
https://doi.org/10.1007/978-3-319-41540-6_5
https://doi.org/10.1007/978-3-319-41540-6_5
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage

ISSTA ’21, July 11–17, 2021, Virtual, Denmark Runxiang Cheng, Lingming Zhang, Darko Marinov, and Tianyin Xu

[57] Hema Srikanth, Myra B Cohen, and Xiao Qu. 2009. Reducing Field Failures
in System Configurable Software: Cost-Based Prioritization. In ISSRE. https:
//doi.org/10.1109/ISSRE.2009.26

[58] M. Stone. 1974. Cross-Validatory Choice and Assessment of Statistical Predictions.
Journal of the Royal Statistical Society. Series B (Methodological) 36, 2 (1974).
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x

[59] Xudong Sun, Runxiang Cheng, Jianyan Chen, Elaine Ang, Owolabi Legunsen,
and Tianyin Xu. 2020. Testing Configuration Changes in Context to Prevent
Production Failures. In OSDI.

[60] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatachalam, Akshay Chander,
Zhe Wen, Aravind Narayanan, Patrick Dowell, and Robert Karl. 2015. Holis-
tic Configuration Management at Facebook. In SOSP. https://doi.org/10.1145/
2815400.2815401

[61] John W. Tukey. 1949. Comparing Individual Means in the Analysis of Variance.
Biometrics 5, 2 (1949). https://doi.org/10.2307/3001913

[62] Ozan Tuncer, Nilton Bila, Canturk Isci, and Ayse K. Coskun. 2018. ConfEx:
An Analytics Framework for Text-Based Software Configurations in the Cloud.
Technical Report RC25675 (WAT1803-107). IBM Research. https://doi.org/10.
1109/DSN-W.2018.00019

[63] Helen J. Wang, Yih-Chun Hu, Chun Yuan, Zheng Zhang, and Yi-Min Wang.
2004. Friends Troubleshooting Network: Towards Privacy-Preserving, Automatic
Troubleshooting. In IPTPS. https://doi.org/10.1007/978-3-540-30183-7_18

[64] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-Min Wang. 2004.
Automatic Misconfiguration Troubleshooting with PeerPressure. In OSDI.

[65] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble. 2004. Configuration
Debugging as Search: Finding the Needle in the Haystack. In OSDI.

[66] Chengcheng Xiang, Haochen Huang, Andrew Yoo, Yuanyuan Zhou, and Shankar
Pasupathy. 2020. PracExtractor: Extracting Configuration Good Practices from
Manuals to Detect Server Misconfigurations. In USENIX ATC.

[67] Chengcheng Xiang, Yudong Wu, Bingyu Shen, Mingyao Shen, Haochen Huang,
Tianyin Xu, Yuanyuan Zhou, Cindy Moore, Xinxin Jin, and Tianwei Sheng.
2019. Towards Continuous Access Control Validation and Forensics. In CCS.
https://doi.org/10.1145/3319535.3363191

[68] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasupathy, and
Rukma Talwadker. 2015. Hey, You Have Given Me Too Many Knobs! Under-
standing and Dealing with Over-Designed Configuration in System Software. In
ESEC/FSE. https://doi.org/10.1145/2786805.2786852

[69] Tianyin Xu, Xinxin Jin, Peng Huang, Yuanyuan Zhou, Shan Lu, Long Jin, and
Shankar Pasupathy. 2016. Early Detection of Configuration Errors to Reduce
Failure Damage. In OSDI.

[70] Tianyin Xu and Owolabi Legunsen. 2019. Configuration Testing: Testing Config-
uration Values as Code and with Code. arXiv:1905.12195 (2019).

[71] Tianyin Xu and Darko Marinov. 2018. Mining Container Image Repositories for
Software Configurations and Beyond. In ICSE. https://doi.org/10.1145/3183399.
3183403

[72] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng, Ding Yuan,
Yuanyuan Zhou, and Shankar Pasupathy. 2013. Do Not Blame Users for Miscon-
figurations. In SOSP. https://doi.org/10.1145/2517349.2522727

[73] Tianyin Xu and Yuanyuan Zhou. 2015. Systems Approaches to Tackling
Configuration Errors: A Survey. ACM Comput. Surv. 47, 4 (2015). https:
//doi.org/10.1145/2791577

[74] Zuoning Yin, XiaoMa, Jing Zheng, Yuanyuan Zhou, LakshmiN. Bairavasundaram,
and Shankar Pasupathy. 2011. An Empirical Study on Configuration Errors in
Commercial and Open Source Systems. In SOSP.

[75] Shin Yoo and Mark Harman. 2012. Regression Testing Minimisation, Selection
and Prioritisation: A Survey. STVR 22, 2 (2012). https://doi.org/10.1002/stvr.430

[76] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Verbowski, and
Arunvijay Kumar. 2011. Context-based Online Configuration Error Detection. In
USENIX ATC.

[77] Andreas Zeller. 1999. Yesterday, my program worked. Today, it does not. Why?.
In ESEC/FSE. https://doi.org/10.1145/318774.318946

[78] Jiaqi Zhang, Lakshmi Renganarayana, Xiaolan Zhang, Niyu Ge, Vasanth Bala,
Tianyin Xu, and Yuanyuan Zhou. 2014. EnCore: Exploiting System Environment
and Correlation Information for Misconfiguration Detection. In ASPLOS. https:
//doi.org/10.1145/2644865.2541983

[79] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. 2013.
Bridging the Gap between the Total and Additional Test-Case Prioritization
Strategies. In ICSE. https://doi.org/10.1109/ICSE.2013.6606565

[80] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and Hong Mei. 2009. Time-
Aware Test-Case Prioritization using Integer Linear Programming. In ISSTA.
https://doi.org/10.1145/1572272.1572297

[81] Lingming Zhang, Darko Marinov, and Sarfraz Khurshid. 2013. Faster Mutation
Testing Inspired by Test Prioritization and Reduction. In ISSTA. https://doi.org/
10.1145/2483760.2483782

[82] Sai Zhang and Michael D. Ernst. 2013. Automated Diagnosis of Software Config-
uration Errors. In ICSE. https://doi.org/10.1109/ICSE.2013.6606577

[83] Sai Zhang and Michael D. Ernst. 2014. Which Configuration Option Should I
Change?. In ICSE. https://doi.org/10.1145/2568225.2568251

[84] Yuanliang Zhang, Haochen He, Owolabi Legunsen, Shanshan Li, Wei Dong,
and Tianyin Xu. 2021. An Evolutionary Study of Configuration Design and
Implementation in Cloud Systems. In ICSE. https://doi.org/10.1109/ICSE43902.
2021.00029

465

https://doi.org/10.1109/ISSRE.2009.26
https://doi.org/10.1109/ISSRE.2009.26
https://doi.org/10.1111/j.2517-6161.1974.tb00994.x
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.1145/2815400.2815401
https://doi.org/10.2307/3001913
https://doi.org/10.1109/DSN-W.2018.00019
https://doi.org/10.1109/DSN-W.2018.00019
https://doi.org/10.1007/978-3-540-30183-7_18
https://doi.org/10.1145/3319535.3363191
https://doi.org/10.1145/2786805.2786852
https://doi.org/10.1145/3183399.3183403
https://doi.org/10.1145/3183399.3183403
https://doi.org/10.1145/2517349.2522727
https://doi.org/10.1145/2791577
https://doi.org/10.1145/2791577
https://doi.org/10.1002/stvr.430
https://doi.org/10.1145/318774.318946
https://doi.org/10.1145/2644865.2541983
https://doi.org/10.1145/2644865.2541983
https://doi.org/10.1109/ICSE.2013.6606565
https://doi.org/10.1145/1572272.1572297
https://doi.org/10.1145/2483760.2483782
https://doi.org/10.1145/2483760.2483782
https://doi.org/10.1109/ICSE.2013.6606577
https://doi.org/10.1145/2568225.2568251
https://doi.org/10.1109/ICSE43902.2021.00029
https://doi.org/10.1109/ICSE43902.2021.00029

	Abstract
	1 Introduction
	2 Background
	3 TCP Techniques
	3.1 Non-peer-Based TCP
	3.2 Peer-Based TCP
	3.3 Hybrid TCP

	4 experimental setup
	4.1 Research Questions
	4.2 Metrics
	4.3 Dataset Collection
	4.4 Implementation
	4.5 Experimental Procedure

	5 Results and Analysis
	5.1 RQ1: Basic Non-peer-Based TCP
	5.2 RQ2: Hybrid Non-peer-Based TCP
	5.3 RQ3: Peer-Based TCP
	5.4 Summary
	5.5 Threats to Validity

	6 Discussion and Future Work
	7 Related Work
	8 Conclusion
	References

