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ABSTRACT

The scale of deep learning models has grown tremendously
in recent years. State-of-the-art models have reached billions
of parameters and terabyte-scale model sizes. Training of
these models demands memory bandwidth and capacity that
can only be accommodated distributively over hundreds to
thousands of GPUs. However, large-scale distributed train-
ing suffers from GPU memory inefficiency, such as memory
under-utilization and out-of-memory events (OOMs). There
is a lack of understanding of actual GPU memory behavior of
distributed training on terabyte-size models, which hinders
the development of effective solutions to such inefficiency. In
this paper, we present a systematic analysis of GPU memory
behavior of large-scale distributed training jobs in produc-
tion at Meta. Our analysis is based on offline training jobs of
multi-terabyte Deep Learning Recommendation Models from
one of Meta’s largest production clusters. We measure GPU
memory inefficiency; characterize GPU memory utilization,
and provide fine-grained GPU memory usage analysis. We
further show how to build on the understanding to develop
a practical GPU provisioning system in production.

CCS CONCEPTS

« Software and its engineering — Cloud computing; «
Computing methodologies — Machine learning,.

KEYWORDS
Distributed Training, GPU Efficiency, Resource Provisioning.

ACM Reference Format:

Runxiang Cheng, Chris Cai, Selman Yilmaz, Rahul Mitra, Malay
Bag, Mrinmoy Ghosh, and Tianyin Xu. 2023. Towards GPU Memory
Efficiency for Distributed Training at Scale. In ACM Symposium on
Cloud Computing (SoCC °23), October 30-November 1, 2023, Santa

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SoCC 23, October 30—-November 1, 2023, Santa Cruz, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0387-4/23/11.
https://doi.org/10.1145/3620678.3624661

281

*Meta Platforms, Inc.

Cruz, CA, USA. ACM, New York, NY, USA, 17 pages. https://doi.org/
10.1145/3620678.3624661

1 INTRODUCTION

The scale of deep learning models (referred to as DNNs)
has grown tremendously in recent years. Practitioners and
researchers continue to build deeper and larger models to
gain better learning performance. Nowadays, deep learning
models that power the growth and main revenue stream in
large technology companies have billions of parameters, and
terabyte-scale model sizes [1, 5, 8, 26, 75].

Training of large-scale models demands significant mem-
ory capacity and memory bandwidth, which cannot be ac-
commodated on a single GPU device. Therefore, various dis-
tributed training techniques were developed to enable large-
scale DNN training on multiple devices [27, 46, 76, 80, 81].
Modern distributed training paradigm splits the memory-
intensive model component (via model parallelism) and repli-
cates the compute-intensive model component (via data par-
allelism) across GPU devices. These approaches have shown
their effectiveness in training large models and increasing
the training throughput in practice.

Today, GPU clusters dedicated to large-scale distributed
training are common in practice [1, 25, 30, 32]. However,
cluster-level GPU memory management for distributed train-
ing remains inefficient. Without effective tools, engineers
often over- or under-provision GPUs for a training job. Our
analysis shows that, in one of the Meta’s largest production
training clusters, half of the jobs utilize at most 50% of provi-
sioned GPU memory, and 9% of the failed jobs were induced
by GPU out-of-memory events (OOMs). GPUs are becoming
more scarce due to wide-spread learning demands [11, 22, 47].
For example, OpenAl is heavily GPU-limited at present and
GPU shortage is delaying a lot of their short-term plans [22].
Improving GPU memory efficiency in large-scale training
is thus important, as training scalability and efficiency are
bounded by GPU memory capacity and bandwidth.

Prior work on improving training efficiency mainly fo-
cuses on workload scheduling and load balancing [2, 3, 6, 17,
18, 20, 28, 31, 35, 45, 49, 60, 84, 91, 94], GPU memory shar-
ing [38, 43, 56, 91, 95], and model reduction [16, 37, 76, 78, 90].
However, the aforementioned studies often assume requested
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amount of GPU memory to be fixed or defined a priori. In
practice, there is a significant gap between the amount of
memory a training job needs and the amount it requests (§5).
Hence, they do not fundamentally address GPU memory
inefficiency of training jobs.

A few prior studies present measurement studies of DNN
memory usage [6, 19, 38, 91]. However, they are either lim-
ited to a single GPU, or only consider data parallelism. We
will show in the paper that large-scale distributed training
has characteristics distinct from these studied settings. For
example, model parallelism has become a norm as model
size scales, which changes memory usage assumed by prior
work—with data parallelism, memory consumptions are the
same across GPUs; however, with model parallelism, mem-
ory consumptions differ significantly across GPUs (§6).

We realize that the understanding of GPU memory be-
havior in large-scale distributed training falls short in the
literature. Prior work analyze DNN memory usage [19, 38,
76, 78, 90, 91, 94] based on theoretical modeling, or coarse-
grained profiling on small DNNs (with sizes being around
1GB) [14, 23, 82, 85]. There is no public source for researchers
and practitioners to understand the actual GPU memory
behavior of production distributed training for models in
multi-terabyte size and are paralleled on hundreds of GPUs
or more [5, 8, 52, 58, 81]. This hinders the research and devel-
opment of effective GPU memory provisioning, scheduling,
and sharing solutions for distributed training at scale.

In this paper, we present a systematic analysis of GPU
memory behavior of production training jobs at Meta. Our
goal is to fill the knowledge gap and shed light on technical
endeavors toward GPU memory efficiency for large-scale
distributed training. We further show how to build on the
analysis to develop a practical GPU provisioning system
to improve GPU memory efficiency for large-scale training
jobs in production. Our work is based on Deep Learning
Recommendation Model offline training jobs in one of Meta’s
largest production clusters. Production DLRMs are multi-
terabyte in size, consume 50+% of the Al training cycles [1,
24, 51], and serve 60% of the Al inference cycles [21] at Meta.

This paper makes the following main contributions:

e Measurement of GPU memory inefficiency (§5). Find-
ings 1-3 show that: half of the production training jobs
utilize less than 50% of their GPU memory; 31% of the suc-
ceeded jobs had been preempted due to GPU contention,
while 9% of the job failures are due to OOM. Our results
imply that solutions to GPU memory inefficiency for large-
scale distributed training are in eminent demand.

e Characterization of GPU memory utilization (§6).
Findings 4-6 show characterization of production jobs un-
der mixed parallelisms. Distinct from well-explored data-
parallel jobs, memory usage varies significantly across
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GPUs in jobs with model parallelisms. Memory usages in-
curred before and in training show distinct patterns, while
both constituting the total memory usage in training. We
motivate a divide-and-conquer analysis on DNN mem-
ory usage, and shed light on effective solutions to GPU
memory inefficiency, in large-scale distributed training.

e Analysis of pre-training GPU memory usage (§7).
Findings 7-9 analyze different segments of GPU memory
usage before training, under model parallelism, broadcast-
ing, optimizers, and data parallelism in production. Model
parallelism dominates the total pre-training usage. We ex-
plore why model parallelisms often balance computation
costs while yielding unbalanced model sizes across GPUs.
Our results suggest corresponding memory provisioning
strategies for different segments of the pre-training usage
such as using upper bounds (§7.1) or regression (§7.2).

o Analysis of training-time GPU memory usage (§8).
Findings 10-13 analyze training-time GPU memory usage
and its relations to computation cost balance, batch size,
and number of GPUs in production jobs. New memory
usage incurred in training varies little across GPUs in a
job when the model’s computation costs are balanced by
parallelism techniques. Our profiling results show that
training-time usage can be decomposed as the maximum
of the peak memory usages in forward pass (activation),
and in backward pass (gradient and autograd).

o Practical GPU memory provisioning (§9). We explain
the limitations of existing work in distributed training
including incomplete memory accounting, substantial pro-
filing overhead or maintenance effort. Driven by the in-
sights of our study, we develop a practical GPU memory
provisioning system named AMP, and evaluate it for the
most frequently trained models at Meta. AMP can save
the number of GPUs by 45% per job on average. We are in
the process of deploying AMP in production.

2 BACKGROUND
2.1 Deep Learning Recommendation Model

Deep learning recommendation model (DLRM) is an impor-
tant class of deep learning models widely used in personal-
ized content ranking and recommendation service [7, 10, 15,
52, 83]. A DLRM trains user data and content and predicts
output, such as clickthrough rate (the probability of the user
clicking a content). The input data consists of both sparse
and dense features: dense features represent continuous data
and sparse features represent categorical data.

Like other popular DNNs [5, 14, 23, 52, 81, 89], a DLRM is
a sequence of layers, each layer is a dense, high-dimensional
tensor. Figure 1 illustrates the canonical DLRM architec-
ture [52, 79, 96]. The model parameters of a DLRM consist
of embedding tables, Multi-layer Perceptrons (MLP), feature
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Figure 1: DLRM architecture (top), and its distributed
training view (bottom) with data parallelism (blue) and
model parallelism (yellow) on 3 GPU trainers.

interaction component, and prediction component. Embed-
ding tables process sparse features into dense representation
vectors, and MLP process dense features. The processed fea-
tures are then fed into the interaction component to produce
feature interaction representation, which is then passed into
the prediction component to make prediction [52].

The dimension of a sparse feature can often reach bil-
lions [79, 96]. So, embedding tables are designed to function
as lookup tables that map sparse features into dense, low-
dimensional vectors, making them easier for learning. For
example, one sparse feature in a training sample could be
“videos clicked in the past 7 days”. The training input of this
feature could contain lookup indices to an embedding table
that stores the representation vectors of all videos, where
each row is a fixed-length vector of a unique video. The
looked-up rows are fetched and pooled (e.g., via summation)
into a low-dimensional vector that represents the value of
the input feature. We refer to all the model parameters (ex-
cept embedding tables) as dense parameters. In a production
DLRM, embedding tables are often several terabytes (TBs);
dense parameters are hundreds of MBs.

2.2 Distributed Training

Training terabyte-scale DLRMs under high throughput re-
quirements demands significant memory capacity and band-
width [1, 21, 41, 46, 79]. So, DLRM training simultaneously
uses both model parallelism to lift the capacity constraint [80,
81] and data parallelism to increase throughput [12, 34, 36].
Figure 1 illustrates an example on three GPU training de-
vices, referred to as trainers. Model parallelism splits the
memory-intensive model component (i.e., embedding tables)
across GPU trainers. Data parallelism replicates the compute-
intensive model component (i.e., dense parameters) and splits
training data across GPU trainers to increase throughput.
Note that the infrastructure challenges of DLRM training
in terms of memory capacity and bandwidth also apply to
other modern DNN training. Traditionally, DNN training
often only needs data parallelism to maximize throughput
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as models can fit into a single GPU device. However, with
the recent advent of large language models and multimodal
models [4, 5, 8, 26, 58, 76, 81], terabyte-scale DNNs are be-
coming popular, making these challenges no longer limited
to DLRM training. For example, distributed training for the
recent large-scale DNNs must also use model parallelism.

2.2.1 Training Workflow. After a training job is config-
ured and submitted to the cluster, it is queued for resources.

Pre-training. The job first undergoes training preparation,
which we refer to as the pre-training phase. This phase in-
cludes model initialization, and several preparation stages:

e “Broadcast”: Sharder manifests model parallelism by gener-
ating a sharding plan of how to partition the model parallel
component (all embedding tables in the model) across all
trainers. This stage runs a sharder [87, 88] to generate a
sharding plan on the leader trainer, the sharding plan is
broadcast globally to other trainers.

e “Sharding”: Materializing model parallelism by loading em-
bedding table partitions into trainers’ device memory [86].

e “Optimizer”: Constructing optimizers for training.

e “DDP”: Initializing distributed data parallelism, e.g., repli-
cating dense parameters, across all trainers.

These stages are essential in distributed training. They are
often implemented with PyTorch libraries in communica-
tion [69], optimization [72], and data parallelism [36, 64].

Training Time. After pre-training phase, the job will start
the training phase which runs the distributed training loop.
A training loop repeats training iterations hundreds of thou-
sands of times. Like other DNNs, one training iteration of a
DLRM is one forward pass followed by one backward pass.
Forward pass is computed from the first (input) to the last
(output) layer of the model, in which model parameters are
accessed to make prediction. Backward pass is computed
from the last to the first layer, in which the gradients of the
prediction loss with respect to (w.r.t.) the model parameters
are computed and used to update the accessed parameters.
A distributed training iteration is as follows. In forward
pass (shown in Figure 1), each trainer processes a different
set of training samples, every sample has the same features.
In each trainer, dense features is processed by the local MLP
replica. Meanwhile, sparse features are sent across trainers
for embedding table lookup—each trainer fetches and pools
rows from local embedding tables and sends to the query-
ing trainers, via an all-to-all communication. Then, in each
trainer, the pooled vectors and MLP output are processed by
its other local replicated dense parameters to output predic-
tion. In backward pass, gradients of the loss w.r.t. the model
parameters will be computed and applied to the parameters.
To synchronize the replicated dense parameters, the average
gradients are computed and applied to all replicas across
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trainers, often through a ring-based or tree-based communi-
cation [36]. To update the embedding table, gradients w.r.t.
the fetched rows will be sent to the corresponding trainer
via another all-to-all communication. Each trainer uses the
received gradients to update the fetched rows locally.

2.2.2 Training Types and Model Placement. There are
two types of training: offline and online training. An offline
training job trains a DLRM on large historical data. An online
training job recurrently trains an offline-trained DLRM on
smaller new data. In production environments, engineers aim
to maximize training throughput in offline training—training
a large model on as much data as possible per unit time. We
focus on offline training jobs as they demand larger memory
capacity and bandwidth, hence extensive GPU resources.

During DNN training, the model must reside in device
memory [1, 78, 81, 91]. For DLRM, there are several options
for placing the embedding tables [1, 79]. The ideal option
is to place everything in GPU High Bandwidth Memory
(HBM). Since most of the computations during DNN train-
ing are done on GPU, this option also eliminates CPU-GPU
transfer overhead [78, 91]. Other options leverage Unified
Virtual Memory (UVM)—an API from NVIDIA that provides
a shared memory address space for host (CPU) and accelera-
tor (GPU) [44]. We can either place all the embedding tables,
or the less frequently accessed ones in UVM (i.e., CPU mem-
ory). Note that using UVM induces a much lower training
throughput, because the memory bandwidth for fetching
data from UVM is capped by the interconnect bandwidth
of PCle [46, 79], which is much smaller than HBM band-
width [53, 55]. So, UVM options are more suitable for online
training with lower throughput requirement [79]. In this pa-
per, we focus on large-scale offline training jobs using only
HBM. Nonetheless, the memory usage behavior is the same
no matter the use of UVM or HBM.

3 DLRM TRAINING AT META

Models. There are hundreds of DLRMs whose offline train-
ing jobs are being actively deployed in production at Meta.
They differ in model architecture, training objective, serv-
ing stage, etc. Each DLRM has an evolving version of the
model as a development template. Different jobs training the
same DLRM often train variants of the template model. Since
many DLRMs have similar architectures, we select three
representative DLRMs that have the most distinct model
architecture from the top-five most frequently trained DL-
RMs when qualitative analysis is needed. We refer to them as
Model-A, Model-B, and Model-C. Both Model-B and Model-C
consist of two sub-models. The sub-models share embedding
tables and MLP, with separate feature interaction and pre-
diction components. Model-C is computationally faster than
Model-B in training by design. Model-A is often the largest
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Table 1: Top-three DLRMs in offline training.

Embedding Tables

DLRM Dense Parameters 4Tables Size
Model-A 0.46GB 2190 5134GB
Model-B 0.80GB 1037 1988GB
Model-C 0.19GB 1864 4197GB

Table 2: GPU model specifications.

GPU Model HBM Size HBM Bandwidth PCle

NVIDIA V100 32GB 900GB/s 32GB/s
NVIDIA A100 v1 40GB 1,555GB/s  64GB/s
NVIDIA A100 v2 80GB 1,935GB/s 64GB/s

as it consolidates multiple DLRMs. These DLRMs predict
clickthrough-rate or click-conversion-rate. Table 1 shows
their production model sizes. Each DLRM has 1000+ embed-
ding tables, with total size of 2 to 5TBs. Embedding tables
occupy over 99% of the DLRM model size. But, in practice,
embedding table size in a DLRM follows a long-tail distribu-
tion, e.g., 75% of them are under a couple of hundred MBs.

Hardware. Each machine host in the cluster is equipped
with 8 GPU devices (8 trainers), and 1.5TB CPU memory.
GPUs on the same host have the same GPU model. Table 2
shows the GPU model specifications.

A training job is highly configurable. ML engineers can
configure the number of trainers, training hardware, and
model placement options for their jobs (§2). If training hard-
ware is not specified, the system will automatically decide on
a GPU model. Each training job only uses one GPU model, i.e.,
no hardware heterogeneity [31, 49]. Each GPU only dedicates
to one job at a time, i.e., no memory sharing due to sharing
overhead [38, 43, 91, 95]. Embedding tables are queried from
databases based on the model configuration during model
initialization. Materialized embedding tables are stored in
device memory during training. Model placement optimiza-
tions on different layers (GPU, CPU, and SSD) [79, 98] do not
directly apply to our setting in this paper (§2.2.2).

Configurations. Batch size and the number of trainers are
two training job configuration parameters that have domi-
nant impacts on memory usage of distributed training jobs.
They are frequently adjusted by engineers in production.
Batch size specifies the number of training samples pro-
cessed by the model per training iteration—a larger batch
size trains the model on more data per unit time to increase
throughput, and takes more memory. A larger number of
trainers parallels the job on more GPUs, which can also in-
crease throughput, by splitting samples across more trainers
in data parallelism (§2). From July to September 2022, the
most used batch size for Model-A, Model-B and Model-C
offline training jobs is 1024 (89%), 2048 (68%) and 1024 (94%),
respectively; the most used number of trainers is 128 for all
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three major DLRMs (with occupancy of 90%, 72% and 88%,
respectively).; among all DLRMs, the most used number of
trainers is 128, and 1024 or 4096 for batch size.

Figure 2 shows the CDF
of total GPU memory usage
of offline training jobs to
their corresponding model
size, for the top-five most
frequently trained DLRMs
in the cluster in November
2022. The total GPU mem-
ory usage of a job is computed as the summation of peak
GPU memory usage across its trainers. The model sizes of
these jobs are multi-terabyte (Table 1). Figure 2 shows the
total GPU memory usage in 70% of the jobs are 2-4 times
larger than their model size. GPU memory inefficiency in
distributed training is easily magnified at this scale.

0 2 2 6 8 10
Total GPU Mem Usage to Model Size

Figure 2: Ratio of total GPU
mem usage to model size.

GPU Provisioning Practices. Production ML engineers
have three main objectives in DNN training: (1) maximizing
training throughput, (2) minimizing the number of trainers
for resource efficiency, and (3) avoiding job failures (e.g., due
to OOMs). Effective GPU provisioning should meet these
three objectives. In this context, GPU memory is a major
consideration of GPU provisioning for large-scale distributed
training jobs, because training scalability and efficiency are
primarily bounded by memory capacity and bandwidth [1,
3, 46, 76, 79]. However, a GPU’s memory is limited.

We observe that ML engineers provision GPUs for their
training jobs manually by manually deriving and setting
the number of trainers. If this job fails due to OOM, the
engineer must decide on a larger number of trainers for the
job, and deploy it again. To reduce the number of failed trials,
engineers often fine-tune the default number of trainers for a
specific model based on their experience, and use the default
value for future training jobs of that model.

The experience-based approach can hardly be accurate
or keep up with the evolving models [92, 93]. In practice,
engineers tend to over-provision GPUs to avoid job failures
due to OOMs, just like any other hardware resources [9,
13, 40, 42, 77]. Our work is motivated by the need for an
automatic GPU provisioning tool to accurately estimate the
amount of GPU memory needed for a given job in order to
improve GPU memory efficiency in production.

4 METHODOLOGY

Our study is based on data of DLRM offline training jobs
from one of Meta’s largest production clusters. The data
range spans from February to December 2022; each part of
the study is based on data spans of least 30 consecutive days.

Memory Efficiency Data. Our analysis on GPU memory
efficiency (§5) is based on recorded resource monitoring data.
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The data records hourly-logged GPU memory utilization of
all the deployed offline training jobs in the cluster for a
limited time span. To analyze OOM events, we collect all
the failed jobs due to OOM or sharding errors based on
automated log analysis of error messages.

Monitoring. To conduct a more fine-grained analysis of
GPU memory utilization (e.g., GPU memory utilization over
time and at different stages, §6-8), we add GPU memory mon-
itors [68] to the production training infrastructure to collect
per-trainer memory utilization for all the deployed DLRM
training jobs. The memory utilization of a GPU trainer is
logged every 30 seconds (finest granularity without affect-
ing production SLO) from model initialization to the end
of the training loop. For example, to study GPU memory
utilization before the training loop (§7), we signpost GPU
memory utilization at important stages that occur before the
training loop. We collect the per-trainer memory utilization
right before and after the execution of each stage.

Profiling. We conduct experiments to profile memory usage
over time for tensors computed in the forward and backward
pass. We randomly sample 16 DLRM offline training jobs
completed in November 2022 in the cluster—four jobs per
each of the following DLRM: Model-A, Model-B, Model-C,
and DHEN [97]. DHEN is included as a sub-model in Model-
B (§3). For all 16 job samples, we profile memory behavior
of their models for two training iterations. We empty the
CUDA cache in between the two iterations [67]. We use the
PyTorch profiler [73], which provides a decomposition of the
allocated memory by tensor functionalities. We use profiling
results from the second iteration to avoid temporal noise
from bootstrapping the profiler and the training loop. For
each sample, we control the profiling experiments on three
aspects: (1) with or without materialized embedding tables,
(2) varying three batch sizes, (3) single GPU versus single
CPU. We have 12 (2 X 3 X 2) experiment runs per sample.

5 GPU MEMORY INEFFICIENCY

Recall from §3 that, without an effective GPU provision-
ing tool, engineers tend to over-provision GPUs to avoid
job failures due to OOMs. While over-provisioning could
benefit individual jobs, it leads to significant inefficiency of
cluster-level GPU resources. In this section, we quantify the
inefficiency in terms of GPU memory.

Finding 1. 50% of the DLRM offline training jobs utilize less
than 50% of their provisioned GPU memory in production.

The peak GPU memory utilization of a job is the peak GPU
memory utilization averaged across its trainers, over the
job’s duration. The peak GPU memory utilization is below
50% for half of all the DLRM offline training jobs. Specifically,
the 25th, 50th, 75th and 90th percentiles of peak utilization
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are 25%, 43%, 71% and 95%. Under-utilization is more severe
on jobs that are configured to use more trainers: less than 10%
of the jobs that use more than 150 trainers had reached 50%
peak GPU memory utilization. Engineers could intentionally
over-provision GPUs for high throughput, e.g., to quickly test
model accuracy. We opt for reducing cluster GPU memory
inefficiency while meeting throughput requirement.

Finding 2. 31% of the failed DLRM offline training job at-
tempts are due to preemption; 22% of the succeeded offline
training jobs have been preempted at least once.

Over-provisioning directly worsens GPU scarcity in produc-
tion. Training jobs preempted due to GPU contention against
a higher priority job are marked as failure, and will be re-
queued for resource. 31% of failed DLRM offline training job
attempts are due to the job being preempted during execu-
tion for a higher-priority job. Further, 22% of the successfully
completed DLRM offline training jobs have been preempted
and retried at least once. The production cluster thus emits
a behavior of false idleness: jobs often get preempted due to
GPU contention, while majority of the jobs only utilize less
than 50% of their provisioned GPU memory at best.

Finding 3. 8.67% of the failed DLRM offline training jobs are
caused by GPU OOM in production.

Although engineers often tend to over-provision GPUs, we
still observe a fair amount of job failures due to under-
provisioning. A job will fail due to GPU OOM when the
memory usage on any one of the trainers exceeds its GPU
memory capacity during training. We observe the percent-
age of GPU OOM in training job failures among Model-A,
Model-B, Model-C, and all DLRMs are 15.13%, 16.39%, 6.94%,
and 8.67%, respectively. 500,000+ GPU hours from the cluster
were wasted within a 90-day range from July to September
2022. We also examine the occurrence of sharder failures
due to GPU memory under-provisioning. A sharder fails if
it cannot determine a sharding plan because the configured
amount of trainers have insufficient memory to store embed-
ding tables. Sharding failures are more lenient than OOM
because they occur before training. Sharder failures consti-
tute about 0.5% of the job failures, and wasted about 30,000
GPU hours from February to October 2022.

Implication. GPU memory under-utilization and OOM are
prevalent in DNN training in open-source and production set-
tings [19, 29, 30, 32]. We observe that large-scale distributed
training simultaneously suffers from these consequences of
GPU memory inefficiency. The demand for effective GPU
memory provisioning is thus eminent for distributed training
at scale, and has not been addressed in practice.
Distributed training jobs in production range from hun-
dreds to thousands of GB in model size, and use tens to
hundreds of GPUs in parallel. Accurately provisioning for
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Figure 3: GPU memory utilization from model initial-
ization till training ends for 3 randomly-sampled jobs.
Top to bottom: Model-A, Model-B, and Model-C.

such a diverse volume of jobs is challenging, because their
GPU memory usage could be affected by various factors—
parallelism paradigms, feature density, model architectures,
etc. Depending on these factors, GPU memory usage differs
significantly across jobs, and even across trainers of the same
job. Moreover, a training job can carry arbitrary code and
configuration changes, making manual solutions untenable.
Most prior studies only provide theoretical reasoning on
memory usage under limited scenarios (e.g., single-device).
Unfortunately, the lack of understanding of actual GPU mem-
ory usage behavior of large-scale production workloads hin-
ders solutions to GPU memory inefficiency in practice.

6 GPU MEMORY UTILIZATION

In this section, we conduct a fine-grained analysis of GPU
memory utilization following §4. We calculate the GPU mem-
ory utilization of a trainer every 30 seconds as its maximum
GPU memory usage within this 30-second window.

Finding 4. GPU memory usage often varies significantly across
trainers within a distributed training job in production.

Figure 3 shows GPU memory utilization of three randomly
sampled offline training jobs, one per our example DLRMs
(§3). Each plot has 128 lines, each line shows the GPU mem-
ory utilization of a trainer. In each job sample, GPU memory
usage varies significantly across trainers. This is common
in jobs with model parallelism. On average, GPU memory
usage of the most memory-consuming trainer is 47% higher
than the average GPU memory usage across trainers in a job.
This large variance is mainly caused by embedding tables
varying across trainers (§7.3 provides detailed analysis).

Implication. GPU memory provisioning for large-scale
distributed training should focus on the peak GPU memory
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usage of the most memory-consuming trainer (especially for
OOM prevention), instead of the average across trainers [19].
Our finding also shows that training jobs often do not use
up the entire memory of every GPU. This presents potential
for GPU memory sharing and job co-location for distributed
training with model parallelism in practice, especially with
the emergence of GPUs with larger HBM size [57]. Trainers
with lower memory utilization can share their GPU memory
within their GPU memory capacity. It also indicates opportu-
nities for utilizing heterogeneous accelerators for distributed
training under model parallelism. To achieve higher GPU
memory utilization, GPU trainers with low utilization in a
job can use GPU models that have a lower memory capacity
during provisioning and scheduling stages. Existing work is
limited to single-device or data parallelism-only scenarios,
where GPU memory usage across trainers varies little.

Finding 5. Most trainers stabilize at their peak memory us-
age early. In over 60% of the jobs: trainers reach their usage
peak when the job is completed at most 40%, the most memory-
consuming trainer reaches its usage peak when the job is com-

pleted at most 20%. See Figure 4.

= Max-Usage Trainer
0 20 40 80

Average
60
Job Progress (%)

In Figure 3, the GPU mem-
ory usage on each trainer of
every job stabilizes quickly
with minor fluctuation. Fig-
ure 4 shows how long a 0
DLRM offline training job
takes for its trainers to
reach 99% of their peak
GPU memory usage. “Max-
Usage Trainer” shows how long the most memory-
consuming trainer takes to reach 99% of its peak usage. “Av-
erage” shows how long on average all the trainers of a job
take to reach 99% of their peak usage. Knowing the usage
change over time for the most memory-consuming trainer
in a distributed training job is important for GPU OOM pre-
vention. In 60% or 80% of the jobs, the average trainers and
the most memory-consuming trainer reach peak usage when
the job is completed less than 20% or 40%, respectively. The
minor bumps after usage stabilized are mainly caused by dy-
namic caching activities of the tensor allocator from PyTorch,
which incrementally builds up a cache of CUDA memory
and reassigns it to later allocations during training [59].

100

Figure 4: Job progress at
99% peak GPU mem usage.

Implication. If peak GPU memory usage were highly unsta-
ble in large-scale distributed training, memory provisioning,
sharing and balancing would have been difficult. We observe
this is not the case. Building solutions to GPU memory inef-
ficiency in large-scale distributed training is thus achievable.

Finding 6. The memory usage incurred before and during
the training loop emit distinct patterns. The memory usage
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Figure 5: GPU memory usage over time prior to train-
ing loop for the same jobs in Figure 3.

incurred before training loop starts continues to constitute the
peak overall memory usage during the training loop.

We revisit Figure 3 to further analyze the peak overall GPU
memory usage. Red vertical line separates the pre-training
and training phases in each job (§2.2.1). These two phases
have different memory usage patterns. Before training, there
is a major memory usage increase, in which the memory
usage on each trainer becomes significantly different. This
increase is mainly due to model parallelism—embedding ta-
bles are partitioned and placed into each trainer’s GPU mem-
ory. During training, there is another major memory usage
increase on each trainer again. But the increased amount is
approximately the same across trainers, and quickly stabi-
lizes. This increase occurs as model starts running forward
and backward pass with training samples on each trainer.
Overall, memory usage incurred before training continues
to constitute the total memory usage during training.

Implication. Our result motivates a divide-and-conquer
approach to analyze the overall GPU memory usage. Distinct
usage patterns before and during training prompt separate
analyses of these two phases. And since they both contribute
to the overall peak usage throughout training, their analysis
results can be aggregated into analysis for the overall usage.

7 PRE-TRAINING GPU MEMORY USAGE

In this section, we study GPU memory usage incurred prior
to the training loop (referred to as the pre-training phase).
Figure 5 shows GPU memory usage at important pre-
training stages for the same jobs in Figure 3. The execution
order and the memory usage at each stage could vary by
models and jobs, because a training job can carry arbitrary
changes from its engineer. From Figure 5, we observe that the
memory usages for each stage together constitute the overall
peak memory usage in the pre-training phase. Each stage
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Figure 6: CDF of mean and stdev of GPU mem usage
across trainers for “Broadcast”, “Optimizer”, “DDP”.

also shows similar memory usage pattern across jobs. This
observation motivates us to analyze each stage separately.

7.1 Broadcasting

Finding 7. The memory usage for broadcasting in a distributed
training job is within constant limit, while it can be positively
affected by the number of trainers. See Figure 6 and 7.

The “Broadcast” stage runs sharder and broadcasts metadata
across trainers. Its memory usage is related to the size of the
metadata, which includes sharding plan, data transformation
information, and model configuration. Because the metadata
is used in trainer communication, it constitutes the peak
GPU memory usage of each trainer during training. We find
metadata to be small so the memory usage for this stage is
capped under a certain limit.
Figure 6 shows that the
average GPU memory us-
age across trainers for “Broad-
cast” is almost the same
in various jobs. Figure 7
shows GPU memory usage
for “Broadcast” averaged
across jobs under different
numbers of trainers. “Broad-
cast” memory usage is overall higher in jobs that use more
trainers, because metadata carries information of all trainers.
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Figure 7: “Broadcast” GPU
mem usage vs. #trainers.

Implication. We may account for “Broadcast” memory us-
age during provisioning by setting a constant upper-bound.

7.2 Optimizer and Data Parallelism

Finding 8. The memory usages for constructing optimizer(s)
and data parallelism both vary little across trainers. They are
both linear to the model’s dense parameters size. See Figure 8.

The “Optimizer” stage constructs optimizer objects that will
be used to update the model parameters during training [72].
The constructed objects hold the optimizer state (e.g., mo-
mentum [74], moments of the gradients [33]), and update the
model parameters based on the computed gradients. Figure 8
compares the size of the dense parameters with the GPU
memory usage of the “Optimizer” stage for 100 jobs. It shows
that the size of the optimizer state is proportional to the size
of the parameters it optimizes on, which is the size of the
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Figure 8: The size of dense parameters versus the max
GPU memory usage across trainers for the “Optimizer”
and “DDP” stages on 100 randomly-sampled jobs.

model’s dense parameters in this case. Figure 6 further shows
that the memory usage for “Optimizer” is the same across
trainers within a job, as each trainer starts with optimizers
that have the same initial state before training starts. Note
that trainers here refer to GPUs, not the optimizer.

The “DDP” stage initializes data parallelism using Dis-
tributedDataParallel from PyTorch [36], which replicates the
dense parameters across trainers, and creates necessary ob-
jects for gradient synchronization [64]. As shown in Figure 8,
in each training job, the GPU memory usage for initializing
DistributedDataParallel is approximately linear to the size of
the dense parameters. We can also see from Figure 6 that the
GPU memory usage of this stage has little variation across
trainers in various jobs.

Implication. The memory usage for data parallelism and
optimizer construction in distributed training jobs can be
predicted linearly to the size of the model’s dense parameters.

7.3 Model Parallelism

Finding 9. Model parallelism incurs large difference across
trainers on their memory usage for storing the model parallel
component. In production, the standard deviation is up to 15GB,
and the difference is up to 50GB, across trainers within the same
distributed DLRM offline training job. See Figure 9.

Recall from §6 that, GPU
memory usage often varies

100

wn 75
significantly across train- § s
ers in a distributed training R : o
. L. 25 =+ = Standard Deviation
job. This is mostly due to f Range
the size of the model paral- 0 10 20 30 40 50
GB

lel component (e.g., embed-
ding tables in DLRM) vary Figure 9: Range and stdev
significantly across trainers of Emb size across trainers.
under model parallelism. Figure 9 shows that the range and
standard deviation of embedding table size across trainers in
a job can be up to 50GB and 10GB, respectively. In 68% of the
jobs, trainer storing the largest embedding table partition is
the most-memory-consuming trainer.

In essence, model parallelism techniques often do not bal-
ance model size across trainers. In DLRM training specifically,
embedding table lookup accounts for half of the total com-
putation and communication cost [96]—they are accessed
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across trainers in forward pass; their gradients are applied
across trainers in backward pass (§2.2.1). Each embedding
table largely differs in table-wise characteristics, e.g., dimen-
sion, lookup frequency (times a table is accessed), pooling
factor (fetched rows per lookup), coverage (training samples
accessing a table). Thus, how to shard terabytes of embedding
tables across trainers significantly impacts training through-
put. Currently, sharder’s primary goal is maximizing training
throughput, by partitioning the model such that computation
and communication costs of the partitions are balanced across
trainers. Finding an optimal sharding plan is NP-hard.

In existing sharders, model

1.00
. N . Lo i Pooling

size (and its balance) is o075 —— Lookup

not a primary consideration G 5, —— Frb Size
. g

with the goal of through- 5.

put maximization. To gen- =

erate a sharding plan for Emb in Descending Size
DLRM, sharders use heuris-
tic driven algorithms to par-
tition and place embedding tables across trainers. Embedding
tables can be partitioned at a mixture of column-, row- and
table-wise granularities. Existing sharders [1, 41, 46, 79, 96]
use various heuristics (e.g., table characteristics, hardware
specifications) to define sophisticated cost functions; the op-
timization algorithms often have stochastic outputs (e.g., re-
inforcement learning). Under such design, lookup frequency
and pooling factor are more effective as cost to be balanced
towards generating a throughput-maximized sharding plan,
as they directly represent the access frequency and access
volume of an embedding table. But, lookup frequency and
pooling factor often do not associate with table size. Figure 10
shows the normalized pooling factor, lookup frequency and
size of 10% of the embedding tables in our studied jobs. A
larger table does not mean it is used more frequently in
training. Consequently, while pooling factor and lookup fre-
quency are more likely to be balanced as part of the cost
across trainers by sharders, embedding table size is not.

Note that some sharders use hierarchical sharding to bal-
ance model size across hosts to mitigate heavy inter-host
communication. Hierarchical sharding assigns each host a
similar load so that the inter-host communication is not
bottlenecked by a few hosts that hold much more model pa-
rameters than the others. Figure 11 shows an offline training
job sample with 128 trainers (16 hosts). Each dot shows the
embedding table size on a trainer. We can see the embedding
table size is approximately balanced across hosts.

Figure 10: Emb table stats.

Implication. Model parallelism techniques (i.e., sharders)
often behave stochastically, and are too intricate to be modi-
fied for other purposes (e.g., provisioning). Instead, we can
bypass handling the sharder’s complexity while accounting
for memory usage from model parallelism, by providing GPU
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Figure 11: Model partition size per trainer of a random
Model-A job with 128 trainers. Red lines separate hosts.

memory provisioning results as input to the sharder to it-
eratively guide sharding and provisioning decisions. Since
computation cost of a model parallel component may not cor-
relate to its size, we believe future techniques on model par-
allelism should incorporate the goal of balancing the model
parallel component size across trainers, which can reduce job-
wise memory utilization imbalance in large-scale distributed
training, and lead to higher training cluster efficiency.

8 TRAINING-TIME GPU MEMORY USAGE

We now study the new GPU memory usage incurred during
training. Note that pre-training usage (§7) still constitutes the
overall GPU memory usage during training (§6). We count
the peak training-time usage during job execution.

Finding 10. Training-time usage varies little across trainers
within a job. In 99% of the DLRM offline training jobs in pro-
duction, the standard deviation is below 2GB. See Figure 12.

The balance of training- w0
time usage is attributed to , ®
. L2 60
the computation cost bal- 2
ance across trainers. Since  °
the training phase only oL -

consists of running the Siandaard 6Devifatio;u (G:S‘Z)
distributed training loop,
training-time usage is es-
sentially the memory allo-
cated for tensors generated while computing the forward and
backward pass in each training iteration (§2.2.1). In DLRM
training, the compute-intensive component (dense param-
eters) are replicated across trainers. So the training-time
usage for computing forward/backward pass on the dense
parameters are the same across trainers. Meanwhile, the
capacity-demanding component (embedding tables) is parti-
tioned across trainers by the sharder. As sharder optimizes
computation-cost balance of embedding tables across train-
ers (§7.3), the training-time usage for embedding table tensor
computations (i.e., lookup, pooling, weight update) during
forward/backward pass is also opted for being balanced.

Figure 12: Training-time us-
age stdev across trainers.

Implication. Since trainers in a distributed training job
often have the same training-time usage, we can apply the
same analysis and techniques to estimate training-time us-
age across all trainers, rather than tackling it on individual
trainers separately during GPU memory provisioning.
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Balancing training-time usage across trainers offers con-
venience for tackling system problems in distributed training
that often need memory estimation, e.g., GPU memory pro-
visioning, scheduling, sharing, and balancing. As long as
the model parallelism techniques can effectively balance the
computation cost across trainers, training-time usage across
trainers should be similar within a distributed training job.

8.1 Impact of Configurations

Finding 11. Training-time usage variance across trainers in a
job is primarily due to the variance of computational cost (e.g.,
lookup frequency and pooling factor in DLRM) across trainers.

We found lookup frequency and pooling factor to be highly
correlated—more frequently accessed embedding tables also
have more rows fetched per access. Further, the lookup fre-
quency and pooling factor of an embedding table is often
significantly disproportional to its size. A small number of
tables have higher access frequency and volume than the
others in a DLRM, but are often not the largest in size (§7.3).

A trainer that stores embedding tables with higher lookup
frequency and pooling factor should have a higher training-
time usage, since more rows will be fetched/updated more
frequently during training. Indeed, we observe a 0.30/0.13
Pearson coefficient between lookup frequency/pooling fac-
tor and training-time usage at trainer level. Since mixed use
of model parallelisms (e.g., row-, column-, table-wise) intro-
duces noise towards aggregating pooling factor and lookup
frequency per trainer, we further validated the causality be-
tween trainer-wise lookup frequency (and pooling factor)
and training-time usage using linear mixed effect model—
a standard linear regression model used to determine the
causal relationship between multiple variables.

Implication. Under model parallelism, imbalance of model
parameter access frequency (e.g., lookup frequency) and ac-
cess volume (e.g., pooling factor) causes the training-time
usage to vary across trainers. Sharder often balances them
(§7.3) and achieves a small training-time usage variance.
Most often we can omit these factors while provisioning
training-time usage. However, more fine-grained solutions
should account for their influence to training-time usage, e.g.,
by iteratively optimizing provisioning decision with sharding
decision until both reach convergence. Our results also mo-
tivate future work in feature engineering to design learning
features with access frequency/volume proportional to their
sizes for large-scale DNN, which helps to reduce sharding
and load balancing complexity in distributed training.

Finding 12. Training-time usage and its variance across train-
ers is linear to batch size. Meanwhile, part of training-time
usage comes from communication overhead, which grows by
the number of trainers within a constant limit.
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Table 3: Tensor categories.

Category | Description

Parameter | Model parameters used in forward pass, e.g., embedding
tables and dense parameters (§2.1).

Gradient Derivatives of prediction loss w.r.t. the model parameters.

Autograd | Tensors generated in backward pass that are not “Gradi-
ent” [62]. They are generally intermediate derivatives from
the chain rule or implementation details of Autograd, e.g.,
accumulation buffers [61].

Activation | Tensors generated in forward pass, and is ultimately used
to compute the gradient tensors.

Input Tensors that contribute to forward pass and gradient com-
putation, but do not depend on other tensors.

Temporary | Tensors created and destroyed in a single operator node.
Optimizer | Tensors held in the optimizer state which are used when
an optimizer updates the model parameters.

Unknown | Tensors unfit for categories above, or memory allocation

not matching a tensor’s storage implementation [66].
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Figure 13: GPU memory usage decomposition by tensor
functionality in one forward and backward pass. Each
column from left to right shows one job sample for
Model-A, Model-B, Model-C and DHEN. Jobs at the
second row have embedding tables materialized as part
of the model parameters, jobs at the first row do not.

We randomly selected one production offline training job per
sample DLRM (§3), and deployed them with different batch
sizes and number of trainers. Our experiments show the max,
min, average, and variance of training-time usage across
trainers are linear to batch size. The slope is different in each
job due to model differences. Communication across trainers
is frequently performed in each training iteration (§2.2.1), via
PyTorch Al1Reduce [36] and NCCL [54]. Our experiments
show communication overhead can grow from 1.5GB to 2GB
per trainer when the same job uses more trainers.

Implication. We can provision training-time usage linear
to batch size in distributed training jobs [19, 39, 78, 94]. The
communication usage can be provisioned with a constant.

8.2 Decomposing Training-Time Usage

We further decompose training-time usage by profiling the
memory usage of tensors computed in the forward and back-
ward pass over time. We categorize the allocated memory
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Figure 14: Four Model-B jobs under the same batch size.
First/second row is without/with embedding tables.

by tensor functionality (see Table 3). Figure 13 presents the
profiled GPU memory of four jobs, one per DLRM. All jobs
use batch size 1024. Each color pattern indicates memory
allocated for a tensor category.

Finding 13. The peak training-time usage in each training
iteration is dominated by the maximum of the peak forward
pass memory usage and the peak backward pass memory usage.

Figure 13 shows similar training-time usage pattern across
different DLRMs. Activation, gradient and autograd tensors
dominate the peak memory usage in training [38, 78, 90, 91].
In forward pass, activation tensors accumulate, whose mem-
ory usage surges quickly near the end of forward pass. This
surge is mostly caused by large prediction head. In backward
pass, autograd and gradient tensors w.r.t. the previously-
computed activation tensors and parameters are being com-
puted. Activation tensors are released after their correspond-
ing gradients are computed. Gradient tensors are released
after being applied to update parameters. Autograd tensors
are not released until after the end gradients are derived [61].
Model parameters and input are kept until after training
ends; memory usages of optimizer, temporary and unknown
tensors are small. From Figure 13, the peak training-time
usage equals to the maximum of the peak usage in forward
pass and the peak usage in backward pass.

Training-time usage vastly differs across models, but varies
little across jobs for the same model type. Figure 13 shows
that each model has a different training-time usage peak and
allocation trajectory, because model architecture governs
the amount and size of tensors that will be traversed per
training iteration. However, jobs for the same model type
show similar pattern in Figure 14 (training jobs of the same
model type often have small architectural changes).

In addition, we draw the following observations:

e In Figure 13 (first row), without materializing embedding
tables, the memory bottleneck lies in caching and compu-
tation of the data parallel component. There is only one
memory usage summit per training iteration, similar to
profiling results on canonical DNNs [38, 91, 95]. In Fig-
ure 13 (second row), embedding tables are materialized in
backward and forward pass. The memory bottleneck lies in
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Figure 15: A Model-A job on batch size 256,512 and 1024.
First/second row is without/with embedding tables.
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Figure 16: Three jobs without embedding tables run-
ning on GPU (first row), versus on CPU (second row).
Left to right: Model-A, Model-B, Model-C.

caching and computation of the model parallel component.
They largely increase the memory usage in backward pass,
since many autograd tensors are held until gradients of
the fetched table rows are derived. With embedding tables,
there are two memory usage summits per iteration.

o The usage decomposition in Figure 15 shows that training-
time usage is overall linear to batch size because both the
peak usage for activation, and the peak usage for gradient
and autograd, are linear to batch size.

e Figure 16 shows the peak training-time usage between
GPU and CPU to be the same. But the usage accumulation
trajectory differs, as activation and autograd tensors are
held longer due to slower tensor computation on CPU.

Implication. Finding 13 offers a way to provision a model’s
training-time usage under given batch size. Because training-
time usage pattern varies little across production jobs of the
same model type, we can extend the provisioning system
on a model basis rather than job basis. Since peak training-
time usage is largely hardware-independent, we can omit
hardware difference when provisioning training-time usage.

Our results also suggest that computation of the model
parallel component incurs high memory usage in backward
pass, resulting in multiple adjacent memory usage summits
per training iteration. Existing memory sharing, or schedul-
ing algorithms for DNN training jobs typically assume one
isolated summit per iteration, with enough time in between
to overlap multiple jobs on a single device [38, 91, 95]. Our
results motivate future work on these directions to further
account for this factor in model parallelism.
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9 GPU MEMORY PROVISIONING

Recall from §3 that, manual GPU provisioning by engineers
can hardly be accurate or keep up with evolving models,
which leads to GPU memory inefficiency in large-scale dis-
tributed training (§5). In this section, we describe our expe-
rience of devising an effective GPU memory provisioning
system for distributed training in production at Meta. Our
system aims to achieve the following goals:

o Accurate provisioning of minimum GPU memory to meet
throughput requirement, while avoiding OOM;

o Automatic provisioning without manual configuration or
maintenance effort;

o Generally applicable to training jobs of different models;

e Efficient with little runtime overhead onto training.

9.1 Limitations of Existing Techniques

We started by exploring the viability of adopting existing
work—a number of prior studies have presented approaches
for estimating GPU memory usage for DNNs [2, 19, 39, 84,
94]. However, we find it challenging to adopt them in our pro-
duction systems. From a high level, existing DNN memory
usage estimation techniques can be categorized as follows:

9.1.1 Modeling. Several scheduling techniques estimate
DNN memory usage with coarse-grained modeling derived
from theoretical reasoning [2, 94]. They estimate a DNN’s
memory usage as the size sum of its parameters, input, acti-
vation and gradient tensors. More fine-grained estimation
techniques [19, 84] define memory cost function (MCF) per
operator. They define an operator’s MCF as the sum of its
weight, output and ephemeral tensor sizes (input, param-
eters, activation, gradient and temporary tensors in §8.2).
These techniques statically traverse DNN graph, get mem-
ory cost at each operator by summing the sizes of its alive
tensors according to its MCF (an alive tensor is one used by
any current or descendent operator), then output the max
memory cost across nodes as the estimated memory usage.

Limitations. Existing models miss important factors of the
DNN memory usage. Coarse-grained models [2, 94] miss im-
portant components from the learning framework and train-
ing system, e.g., broadcast, optimizer (§7), and autograd (§8).
Fine-grained models (i.e., MCFs) are static, and are derived by
theoretically reasoning the relationship between the param-
eters and memory usage of each operator [19, 84]. However,
operators in production are diverse and customized. Some
operators have complex definitions, with stochastic behavior,
e.g., the memory usage relation of embedding table operators
varies by learning features [46]. Hence, hardcoding operator-
wise models are brittle. Also, existing models cannot account
for autograd tensors—their memory usage is dominant in
backward pass and is unknown before execution (§8.2).
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9.1.2 Profiling. Several scheduling techniques obtain mem-
ory usage of DNN jobs by performing fine-grained profiling
on the jobs during training [18, 31, 35, 91]. They profile either
the entire job, or smaller sample jobs of the actual job before
it is scheduled, often at second or millisecond granularity.

Limitations. Profiling the training loop adds non-negligible
overhead to training efficiency at production scale. A training
iteration usually takes less than a second, job- or GPU-wise
profiling at second granularity slows down the training loop
for the vast volume of jobs that need profiling in the cluster.
From our experience, profiling smaller sample jobs cannot
provide accurate memory usage statistics for provisioning
due to various shrinkage to the large-size model and training
configurations of the actual job.

9.1.3 Testing. One technique [39] leverages test-case DNN
generation and neural network formal specifications to esti-
mate a model’s memory usage. For a particular DNN (e.g.,
VGG [82]), it generates test-case DNNs by combinations of
sample parameter inputs to each operator in the DNN. It
then selects valid test-cases with formal specifications of
the DNN architecture, obtain memory usage of each test-
case via profiling or static analysis, and learns a polynomial
regression on these test pairs to predict memory usage.

Limitations. With sophistical production model architec-
tures [97], generating comparable test-cases is hard. Esti-
mating memory usage of these test-cases also demand ex-
tra endeavors, i.e., profiling or static analysis [39]. Further,
developing formal specifications of production models for
test-case validation requires manual effort, and is difficult to
keep up with the evolving models.

9.2 AMP: A Practical Provisioning System

We developed a practical GPU memory provisioning system
called AMP for production DLRM training at Meta. AMP is
an analytical approach built with open-source PyTorch.

9.2.1 Design and Implementation. AMP runs at model
initialization. To provision GPU memory for a training job,
AMP automatically estimates its model’s peak memory usage
given throughput requirement specified by engineers (batch
size), and configures its number of trainers before training.

Design. Peak memory usage on a trainer is constituted by
storing the model parallel component, and the other memory
usage. Shown in Figure 17, AMP first estimates the other
memory usages as the reserved memory of each trainer, and
feeds it as input to the sharder. Sharder generates a sharding
plan for model parallelism using the remaining memory
(original capacity minus reserved memory) on each trainer.
In this way, AMP bypasses interfering sharder’s stochastic
optimizations (§7.3). If sharder fails, AMP provisions more
trainers from a small default value until sharder succeeds.
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Figure 17: Provisioning system AMP first estimates the
reserved memory, then iteratively provisions GPUs if
remaining memory (memory capacity minus reserved
memory) cannot fit the model parallel component.

Training starts

AMP automatically estimates the reserved memory via
divide-and-conquer (“Technique” in Figure 17). Peak memory
usage accounted by the reserved memory is constituted by
usages from pre-training stages, and training-time usage (§6).
AMP estimates each of them separately:

e Peak memory usages for communication and CUDA stream

are accounted by constant upper-bounds (§7.1, §8.1).

e Peak memory usages for “DDP” and “Optimizer” are esti-
mated linear to the model’s dense parameters size (§7.2).

e Training-time usage is estimated by symbolically execut-
ing the model under FX transformation [70] with training
sample batches. AMP finds and compares the memory
usage peaks in forward and backward pass via symbolic
execution, and uses the higher peak as the estimate (§8).

Implementation. The upper-bounds for communication
and CUDA stream usage are updated periodically by query-
ing memory usage signposts at the start and end of the pre-
training stages of recent historical job samples.

During model initialization of a job, we transform the
model into a torch.fx.GraphModule instance, which is a
graph intermediate representation of the model where each
node represents a callsite to entities such as operator [70, 71].
We calculate the size of dense parameters on the transformed
model to estimate memory usage for “DDP” and “Optimizer”.

To estimate training-time usage, we symbolically execute
the transformed model with raw training input batches. We
use ShapeProp to execute the graph node-by-node with the
given arguments, and get the output tensor’s metadata (e.g.,
shape, data type, require_grad) of each node [65]. In the
forward traversal, we compute the size-sum of output ten-
sors that have their require_grad set to true as the forward
usage estimate. This estimates the peak memory usage for ac-
tivation. In the reversed traversal, we compute the maximum
size-sum of output tensors used downstream at any given
node in the graph as the backward usage estimate. This esti-
mates the peak memory usage for gradient related tensors.
The final estimated training-time usage is the maximum of
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Figure 18: Actual versus estimated total GPU memory
usage of 300 offline training jobs for top-five DLRMs.

these two entities (§8.2). Symbolically executing the model
graph with original batch size (e.g., 1024, 2048) can cause
OOM. So we compute estimates from 10 micro batch sizes
(e.g., 13, 43), and use them to predict the final estimate (Find-
ing 12). The estimation process takes a few seconds.

Summary. AMP provisions GPU memory by estimating and
tuning the job configuration before training. It is thus easy to
be incorporated into AutoML frameworks, e.g., for parameter
auto-tuning, based on our experience in production.

AMP is independent of specific profilers, it only adds a
one-time overhead to the job before training starts. AMP
regularly queries memory usage signposts of pre-training
stages from recent job samples (§3) to update upper-bound
estimations with near-zero overhead. In comparison, profil-
ing memory usage of a training job adds constant overhead
to the job. AMP can account for memory usage from all
important tensor categories missed by coarse-grained mod-
els (§8.2) with symbolic execution. AMP also does not need
sophisticated models (i.e., operator-wise MCFs), because it
symbolically executes each operator with training input and
gathers their respective tensor sizes to compute usage peaks
(§8.2). AMP requires no DNN generation and verification.

From our experience, AMP can be extended to other model
types. If the model type has a new custom tensor type (which
is uncommon), we need to add it to the tensor size-sum cal-
culation when estimating training-time usage. Other usages
differ little by model type. If a model type uses a new opti-
mizer, we’ll need to understand the optimizer as in §7.2.

AMP does not consider training-time usage variance across
trainers. In practice, this variation is mostly very small (Fig-
ure 12), but it can be larger if computation cost is unbalanced
(Finding 11). We can potentially address this issue by inte-
grating sharding logic into provisioning. AMP also does not
consider CUDA caching behavior which has minor impacts
on total memory usage (§6).

9.2.2 Evaluation. We evaluate AMP in production for top-
five DLRMs (§3). Figure 18 shows relative error (————

between the estimated and actual total GPU memory usage
of the most memory-consuming trainer on 300 randomly
sampled production offline training jobs in December 2022.
The actual usage is obtained via monitoring (§4). For these
jobs, the 75th percentile of symbolic execution cost is 2.2
seconds. The left plot compares actual and estimated usages,

100(Est—Actual)

~
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where jobs are sorted in ascending actual usage. AMP is
generally accurate, and over-estimates at the distribution
tails. The right plot shows the estimate is below 25% over
the actual max peak usage in 70% of the jobs. In 3% of the
jobs, AMP under-estimated. In another 3%, the estimated
usage exceeds the GPU memory capacity. In this case, user
configurations are used as fallback. On the evaluated jobs,
AMP can reduce user-configured number of GPUs by 45%,
and save 1 million GBs of HBM.

10 DISCUSSION

In this section, we discuss the generalizability and limitations
of our findings from §5-8, and threats to validity of this paper.
Our findings do not assume any characteristics of specific
DLRMs. Embedding tables and other model components in
a DLRM are essentially dense tensors, similar to what other
major, large-scale DNN are composed of (§2.1). In DLRM,
lookup frequency and pooling factor of the embedding ta-
bles represent the communication and computation costs of
the dense tensors that are model-parallelized. Many of our
findings should generalize to other DNNs beyond DLRMs.
Findings 1-3 study GPU memory inefficiency in produc-
tion scale, which we believe is true for other DNNs [19, 29,
30, 32]. Findings 4-8 study memory usage governed by train-
ing components (training loop, broadcasting, optimization,
data parallelism) whose implementations should generalize
beyond specific model architectures [64, 69, 72]. Since our
study is based on PyTorch models and tooling, these results
could be specific to PyTorch and NCCL [54, 59, 62, 63, 73].
Findings 9-10 could be limited by the underlying model
parallelisms. DLRM mostly uses intra-layer parallelisms [46],
which shard each operator in the model into chunks [76,
81]. Orthogonal to intra-layer, inter-layer parallelisms (e.g.,
pipeline parallelism) shard the model into groups of opera-
tors [27, 48]. Some techniques use both [50, 99]. Under inter-
layer parallelisms, memory usage could still differ across
GPUs due to sharding, but the training-time usage may vary
across GPUs, because each GPU holds a different group of
operators and the computation cost may vary across GPUs.
Findings 11-12 study the effect of computation cost bal-
ance, batch size, and number of trainers in large-scale dis-
tributed training. We believe their relations to GPU mem-
ory usage are generalizable. Finding 13 generalizes beyond
DLRM from our experience, though concrete memory usage
shape would differ in different DNN architectures.

11 OTHER RELATED WORK

Prior studies on DNN training cluster focus on workload
characteristics, cluster throughput and training failures [1,
6, 25, 30]. Our work complements them with in-depth char-
acterization of DNN training memory usage (§5-6).
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DNN memory management techniques aim to reduce
model memory footprint (the amount of memory a model
needs) to improve training throughput [16, 37, 76, 78, 90].
They offer insights on DNN memory usage with theoretical
reasoning and static analysis. We aim to reduce the amount
of memory a job requests to improve GPU memory efficiency,
with a more fine-grained analysis at production scale.

Memory sharing for concurrent training [38, 43, 56, 91,
95] leverages the cyclic memory usage pattern of DNN to
enable a GPU’s memory shared temporally (time slicing) or
spatially by multiple training jobs on single-device or data-
parallel scenarios. We study memory usage of large-scale
production DNN training jobs under mixed parallelisms. Our
results show distinct characteristics of model-parallel jobs,
and potentials for future work in memory sharing (§6, §7.3).

DNN job scheduling and balancing techniques assume
requested amount of GPU memory of a training job to be
fixed or predefined, and focus on maximizing training cluster
throughput [2, 3, 6, 17, 18, 18, 20, 28, 31, 35, 45, 49, 60, 91, 94].
Our work focuses on proactively reducing the requested
amount of GPU memory of a job. We analyze GPU memory
efficiency of production jobs under mixed parallelisms to
shed light on future work along distributed training at scale.

12 CONCLUSION

As the size of deep learning models grows at terabyte scale,
large-scale distributed training is becoming a norm. This pa-
per presents a systematic analysis of GPU memory behavior
of large-scale distributed training jobs in production at Meta.
We measure GPU memory inefficiency, characterize GPU
memory utilization, and provide fine-grained analysis on
GPU memory usage of production jobs. Our study revealed
over a dozen findings with concrete implications. We further
build on the analysis to develop a practical GPU provisioning
system to improve GPU memory efficiency in production.
We believe future research can leverage our study to improve
GPU memory efficiency in distributed training.
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