N
Check for
Updates

pytest-ranking: A Regression Test Prioritization Tool for Python

Runxiang Cheng Kaiyao Ke Darko Marinov
University of Illinois, USA University of Illinois, USA University of Illinois, USA
rchengl2@illinois.edu kaiyaok2@illinois.edu marinov@illinois.edu

Abstract

Regression Test Prioritization (RTP) can find test failures quicker
and provide faster feedback to developers to help in debugging.
While RTP has been researched for almost three decades, with
many research techniques proposed, practical tools and evaluations
are sporadic. We present PYTEST-RANKING, a robust tool for Python
and its most popular testing framework Pytest. We evaluate our tool
on 4,308 builds for 14 open-source Python projects running on the
GitHub Actions CI. Our experiments show that our tool integrates
well with the Pytest ecosystem, has a low runtime overhead, and
finds test failures faster than the default and random order baselines.

CCS Concepts
« Software and its engineering — Software testing and debug-
ging.

Keywords
Software testing, regression testing, test prioritization, Python

ACM Reference Format:

Runxiang Cheng, Kaiyao Ke, and Darko Marinov. 2025. pytest-ranking: A
Regression Test Prioritization Tool for Python. In 33rd ACM International
Conference on the Foundations of Software Engineering (FSE Companion °25),
June 23-28, 2025, Trondheim, Norway. ACM, New York, NY, USA, 5 pages.
https://doi.org/10.1145/3696630.3728587

1 Introduction

Developers frequently run regression test suites in Continuous
Integration (CI) to expose potential faults in their project changes.
Delays in obtaining test results from CI slow down development
cycles and prevent timely feedback to the developers. Researchers
have proposed Regression Test Prioritization (RTP), which aims
to expose potential faults sooner by reordering tests in the test
suite such that the tests more likely to fail are run earlier [18, 57].
Many RTP techniques have been developed, e.g., using test costs [2,
59], past outcomes [22, 72], code coverage [57, 58], information
retrieval [60], and machine learning [1, 63]. These RTP techniques
were shown effective on CI build datasets of both open-source and
proprietary software [7, 8, 18, 20, 25, 27, 29, 30, 70].

Although many RTP techniques and datasets exist, there is no
readily usable, open-source tool for running RTP in CI. Several
research RTP tools have been developed, but mostly for Java where
widely used testing frameworks change slowly, e.g., the test order-
ing extension for Surefire, the default test runner for the Maven
build system, has been pending for 2.5 years [65]. Some prior studies

This work is licensed under a Creative Commons Attribution 4.0 International License.
FSE Companion °25, Trondheim, Norway

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1276-0/2025/06

https://doi.org/10.1145/3696630.3728587

1089

have released scripts for RTP [1, 4, 8, 9, 63] but limited to repro-
ducing evaluation results on research datasets; they provide no
interface to integrate with common testing frameworks [68] or CI
services. Lack of a readily usable tool makes it difficult for practi-
tioners to adopt RTP research results in their CI practices and for
researchers to evaluate their RTP innovations in widely used CI
systems. Thusly motivated, we develop an RTP tool for Python,
because it is one of the most popular programming languages, and
Pytest, its most popular testing framework, is often more open to
accepting new contributions than Maven Surefire.

Moreover, most prior studies [4, 18, 20, 27, 30] have only evalu-
ated RTP techniques by simulating RTP orders on historical builds—
they reorder tests from the original test suite runs (TSRs) of the
build but compute RTP effectiveness on the reordered test suite with
test outcomes and durations copied from the original build, without
actually executing the reordered test suite. Such simulations can
miss issues in test execution, e.g., the reordered test suite can have
different test outcomes or durations [68], reordering can violate
test-order dependency [24], and test parallelism can impact RTP
effectiveness [74]. These are important issues, and their influence
on RTP effectiveness should be evaluated.

This paper makes the following contributions:

Core Tool: We develop PYTEST-RANKING, an RTP tool for Pytest,
the most prominent testing framework for Python. We release its
source on GitHub [13], binary on PyPI [38] for easy installation,
and a demo video linked from https://zenodo.org/records/15149581.
Ecosystem Integration: We make PYTEST-RANKING easy to use
as a Pytest plugin compatible with several other plugins for test
selection, test parallelization, and test ordering. Moreover, PYTEST-
RANKING is easily deployable, and we integrate it with 14 projects
that use GitHub Actions, currently the most popular CI system.
Realistic Evaluation: We evaluate PYTEST-RANKING by actually
rerunning historical builds on GitHub Actions, rather than just sim-
ulating the test outcomes and durations. Our analysis of test failures
finds many flaky tests [26], which simulations would have missed.
We also find PYTEST-RANKING effective, with a low overhead.

2 Implementation

We implement PYTEST-RANKING as a plugin for Pytest. Figure 1 il-
lustrates how the components of PYTEST-RANKING interact with the
core Pytest. PYTEST-RANKING has four main components: Ranker,
Monitor, Extractor, and Reporter. When PYTEST-RANKING is enabled
(), Pytest provides the selected test suite to the Ranker ((2)) and
receives a prioritized test suite to run ((3)). Monitor collects the rel-
evant test data (test duration and test outcome) as each test finishes
(®@). Extractor processes the data when the entire test suite finishes
and saves the data of the TSR into the cache directory provided by
Pytest ((); note that Ranker will use the cached data to prioritize
tests in subsequent TSRs ((®). At the end of the TSR, Pytest reports
a summary, accompanied with a summary from the Reporter ((7)).

https://orcid.org/0000-0001-5058-9405
https://orcid.org/0000-0002-0846-1923
https://orcid.org/0000-0001-5023-3492
https://doi.org/10.1145/3696630.3728587
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3696630.3728587
https://zenodo.org/records/15149581
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3696630.3728587&domain=pdf&date_stamp=2025-07-28

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

ot

$ cd project_directory
$ pytest --rank

Pytest pytest-ranking
Collect Tests @ Ranker
g 27 :
Execute Tests = Monitor
iv a 71;}/7&:751[7(73;07}71; 7 Wi @ Extractor
,,,,,,,,,, it
Print Summary Q) Reporter

Figure 1: PYTEST-RANKING interaction with Pytest core.

2.1 Tool Components

To develop PYTEST-RANKING, we follow the best practices from the
Pytest documentation and popular plugins built by Pytest devel-
opers [47, 48]. Specifically, we define an entry point for PYTEST-
RANKING [56], so when Pytest is run, it can automatically discover
and load the installed PYTEST-RANKING [45]. Once PYTEST-RANKING
is loaded, it initializes a runner object of the class RTPRunner that
contains custom implementations of Pytest hooks, which are Pytest
APIs that a plugin can re-implement to change Pytest’s default
behavior [55]. PYTEST-RANKING then registers the runner to Pytest
plugin manager [49], so that Pytest will execute RTPRunner’s imple-
mentations when running these hooks.

We next describe implementations of the main components.
Ranker re-implements a Pytest hook [50] that takes a list of test
items from Pytest [43] and reorders it. Ranker can apply various RTP
techniques for reordering. In Pytest, a test item, which we shorten
to just test, is either a test function/method or a parametrized unit
test (PUT) with a concrete parameter value. Each test has a unique
ID based on its “collection address” [44], e.g.:

dir/test_module.py::test_class::test_function[value]

By default, Pytest orders the list hierarchically before passing
it to Ranker: tests in the same file follow the definition order, and
files follow the directory tree traversal order. Ranker sorts the tests
based on their RTP score, as computed by various RTP techniques.
Ranker uses a stable sort, i.e., it uses the initial order to break ties
when multiple tests have the same RTP score.

From the myriad of prior RTP techniques [18], we implement
three in Ranker—QTF, RecentFail, and SimChgPath—because recent
research shows that simple RTP techniques often work better than
more complex techniques, including machine-learning based tech-
niques, especially when evaluated for realistic scenarios [4, 8, 32].
QTF prioritizes tests with a shorter runtime from their last runs; Re-
centFail prioritizes the recently-failed tests. SimChgPath prioritizes
tests whose IDs are more textually similar to the paths of Python
files changed since the last TSR; its change-awareness complements
other techniques [32, 60]. PYTEST-RANKING tracks changed files be-
tween TSRs with file content checksums [17].

Ranker uses configurable weights to linearly combine values
from all three RTP techniques into a test’s overall RTP score, and
then prioritizes tests by their scores. Linear combination imple-
ments a hybrid RTP that is more effective than any individual RTP
technique [4, 32] and easier to scale with new techniques [64]. To
combine different RTP techniques, Ranker normalizes the values to
the [0, 1] range for each technique [8, 70], ensuring that a higher

1090

Runxiang Cheng, Kaiyao Ke, Darko Marinov

value means a higher priority. For tests with no prior RTP data, i.e.,
likely new tests, Ranker assigns the highest priority.

Ranker allows the user to reorder tests at different granularities,
from test values to functions, modules, or directories. Ranker is
hierarchy-aware [24, 68], e.g., if a user runs module-level RTP,
Ranker identifies a test’s parent module m via its ID, computes the
average score from tests in m as the RTP score of m, and prioritizes
on modules; tests in each module follow the Pytest initial order.
Monitor re-implements a hook [51] to collect test execution data.
After each test finishes, Pytest calls Monitor with a TestReport
object [54] of this test as input. A TestReport has attributes such as
execution duration and outcome. To minimize runtime overhead,
Monitor only appends each TestReport to an in-memory list in
RTPRunner; Extractor processes these reports when the TSR finishes.
Extractor saves the RTP data of the executed tests from TestReports
to the Pytest cache [41]. The Pytest cache directory is in the target
project’s root [40]; Extractor creates a subdirectory to store map-
ping data for RTP techniques. For QTF, Extractor saves a key-value
mapping from a test to its duration from the current TSR. For Re-
centFail, it saves a mapping from a test to how many times it has
passed since its last failure, as computed from the previous cache
value and the current outcome. SimChgPath data (file checksums)
is handled by Ranker as change file set is only checked before a
TSR. PYTEST-RANKING overwrites the previous cache with the new
one, not saving data for historical TSRs to minimize cache usage.
Reporter adds a session to the Pytest terminal summary to report
the configuration and overhead of PYTEST-RANKING [52].

3 Usage

PYTEST-RANKING is a Python package and can be installed and
managed via pip. PYTEST-RANKING is invoked by setting Pytest’s
command-line options or configuration files [42]. For example,
pytest --rank runs PYTEST-RANKING with the default configuration.
PYTEST-RANKING has these configurable options:

e —-rank-weight sets RTP technique weights (§2). If all weights
are 0, PYTEST-RANKING randomly shuffles tests, i.e., Random.
--rank-level sets the granularity level on which RTP is run
in the test suite hierarchy [68]. Its value can be put (each
PUT is treated as its own group), function, module, and dir.
Test units in the same group follow the default order, while
groups are reordered by the average RTP score.
--rank-hist-len sets the largest value that can be recorded
for each test for RecentFail [9].

e --rank-seed sets the random seed for Random.

If a CI workflow runs different builds in a fixed location, e.g., a
project directory on a specific machine, users can deploy PYTEST-
RANKING into CI without any additional setup. If the CI workflow
always starts a new virtual machine to run a build, PYTEST-RANKING
requires setting up the workflow to pass the Pytest cache data across
builds. In our experience with GitHub Actions, the setup adds only
14 lines of YAML to a CI workflow file [10, 13].

PYTEST-RANKING works with test selection [47] and paralleliza-
tion [39]. It also works with plugins for ordering tests [34, 35], by
running ordered tests first in their declared order. Some Pytest op-
tions [53], or plugins that randomly order tests [37], can interfere
with PYTEST-RANKING as they use the same reordering hook [55].

pytest-ranking: A Regression Test Prioritization Tool for Python

4 Experiment Setup

To evaluate PYTEST-RANKING, we collect and rerun builds from 14
projects that use Pytest and GitHub Actions.

4.1 Dataset Collection

Project Selection. We start from the 2,500 most downloaded projects
in the year 2023 on PyPI [19, 33] and select candidate projects
through metadata filtering and manual inspection.

First, we exclude projects that did not list a valid GitHub URL, a
required Python version, or a required Pytest version in their PyPI
metadata [19]—these steps yield 315 projects. Then, we exclude
projects that did not run CI for their recent commits [15], and
projects whose git clone takes over 1 minute (these are likely
too large for our compute budget)—these steps yield 122 projects.
To find popular projects with sufficient failures, we keep projects
with over 1,000 GitHub stars, at least one failed TSR on the default
branch—these steps yield 58 projects.

We inspect the top 40 out of the 58 most downloaded projects.
We fork each project, find its latest CI build with passing TSR, rerun
that build on the fork, and inspect the results. We include a project
for evaluation if that build (1) ran tests on GitHub Actions (which
provides uniform API access to test logs and artifacts [11]), (2)
passed on ubuntu-latest and Python 3, and (3) has a TSR duration
exceeding 45 seconds. Our inspection yields 12 projects.

We also select projects that already run tests randomly, as they
likely have no test-order dependency [24, 73] and could be open to
RTP. However, we found only 1 eligible candidate after applying
the selection steps above to the 2,500 most-downloaded projects. To
select more projects, we eventually searched the top 50,000 most-
downloaded projects, found 91 projects that used related plugins [36,
37], excluded 72 after filtering, and selected 2 after inspection.

In total, we select 14 (12 + 2) projects to evaluate.

Build Collection. An RTP tool could be deployed to CI at a certain
time and run on all builds from that time. Thus, for each project,
we collect all builds [12] from 2024-01-01 to 2024-12-01; we order
the builds chronologically by their start time [8, 66].

Some builds did not contain a TSR (e.g., package-release builds)—
they cannot be used to evaluate RTP. We remove non-TSR builds by
checking if the build is from a CI workflow file that runs tests: for
each project, we manually find the CI workflow file that runs tests,
collect the set of paths this file has historically taken via git log, and
check if a build’s workflow file path matches any of the collected
paths. We only keep TSR builds that have a completed status, with a
success or failure build conclusion [12]—we removed incomplete
TSR builds (e.g., cancelled, timed_out, or skipped builds), because
they are often ignored in development and would trigger reruns.
We eventually collected 27,224 builds with TSRs, however, we did
not evaluate them all to limit computation time (§4.2).

4.2 Experiment Procedure

Different from prior work, we do not only simulate RTP order on the
historical builds (§1). Instead, we use PYTEST-RANKING to actually
execute the RTP-ordered test suite of the historical build, on the
code version that the build ran; then we study the test results (§5).

To rerun historical builds on a project, we first fork the project
and set up PYTEST-RANKING in its GitHub Actions CI test run file

1091

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

(§3). For each build, we get the repository content archive at the
commit of the build [14], overwrite the fork with the archive content
except for the modified CI file, and push the code to GitHub. GitHub
Actions automatically builds the pushed code with the modified CI
file, and we finally download the produced TSR results. Rerunning
historical builds could install later versions of the dependencies that
are incompatible with the historical code version, and introduce
unwanted failures. To eliminate such failures, we integrate the
package manager UV with its -—exclude-newer option to evaluated
projects’ CI workflows, so that UV installs dependency versions
released before the start date of a given historical build [67].

To mimic how these projects would have run PYTEST-RANKING,
we (1) make minimal change to their original CI file; (2) use the same
GitHub Actions CI service; and (3) run builds with one environment
they used, i.e., Ubuntu and Python 3. We also mimic build overlap:
if build i + 1 started after build i ended, we rerun i + 1 after i finishes
rerunning (so i + 1 uses the cache updated by i); otherwise, we run
both builds in parallel as i + 1 would have used the cache prior to i.

For each build, we run 6 orders: 4 RTP orders (QTF, RecentFail,
SimChgPath, and Hybrid that combines the prior three with equal
weights) and 2 baselines (Pytest Default and Random). Each order
runs as a separate CI workflow to avoid interference of Pytest cache.
We run orders at the function granularity (§3): test functions are
prioritized, but parameter values of the same PUT function follow
the default order as they often have order dependency [46].

We do not rerun all 27,224 builds 6 times [16] but select all failed
builds, and the first non-overlapping successful build before each
failed build. The successful builds are used to create the right data
cache for running RTP on the failed builds. For each project, we
rerun its selected builds until reaching the last build or the 50th
build; we then rerun more builds until reaching at least 30 failed
TSRs per project. We collected the TSR results as JSON-formatted
test reports. We run each order once per build to (1) analyze test
failures, and (2) compute effectiveness for all orders except Random.
To compute effectiveness for Random [71], we rerun Random 10
additional times per originally failed build using rerun IDs as seeds.

5 Evaluation Results

Table 1 shows the statistics of our evaluation dataset. Following
§4.2, we successfully reran 718 selected commits/builds from 14
projects and obtained 4,308 TSRs (6 TSRs per commit). Some se-
lected commits failed to rerun, because they have errors that cause
their test runs to exit early (e.g., commits from stale branches using
unavailable, old dependencies). Of 4,308 TSRs, 1,121 had at least
one test failure, 720 had at least one regression failure, and 660 had
only regression failure. §5.1 presents our analysis of these failures.
§5.2 discusses the effectiveness and overhead of PYTEST-RANKING.

5.1 Analysis of Test Failures

Flaky tests can pass or fail on the same code version, therefore they
do not always indicate regression faults in CI [9, 19, 26, 31]. While
research often uses “sanitized” datasets that carefully remove flaky
tests, e.g., [21], real CI runs do have flaky failures as also reported
by some prior work [4, 9, 32]. Our inspection finds three types of
flaky tests: OD (order-dependent) [23], Concurrency (non-desirable
worker interactions), and ND (non-deterministic outcome [5]).

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

Runxiang Cheng, Kaiyao Ke, Darko Marinov

Table 1: Evaluation dataset and results. Reg. means regression, RTP techniques are described in §2.1.

Project Commits TSRs Failed tests | Test failures Mean APFDc on regressions Mean TSR size Tool overhead

All | Failed | w/ Reg. || Flaky | Reg. | Flaky | Reg. || Def. | Ran. | QTF | Rec. | Sim. | Hyb. || Tests | Time (s) | Time (s) | Cache (KB)
aeon 49 294 121 120 9 341 21 | 3,307 0.48 0.50 0.72 | 0.72 0.48 0.70 || 32,295 2,202.2 0.21 538
ansible-lint 50 300 128 24 11 10 310 140 0.87 0.62 0.84 | 0.77 0.87 0.82 815 350.7 0.02 71
apscheduler 102 612 34 30 3 322 22| 1,948 || 0.19 045 | 0.76 | 0.24 | 0.52 | 0.75 740 52.3 0.02 15
dask 51 306 65 48 9 118 32 943 || 0.44 0.52 | 0.80 | 048 | 0.41 | 0.67 || 12,613 802.1 0.07 216
dve 49 294 86 30 9 5 76 42 || 0.54 0.53 | 0.70 | 0.70 | 0.53 | 0.75 2,693 306.1 0.02 81
ipython 42 252 171 42 83 2 2,257 42 0.58 0.44 0.99 | 0.87 1.00 1.00 1,422 91.2 0.08 37
librosa 32 192 30 30 0 10 0 90 0.25 0.48 0.77 | 0.63 0.45 0.83 13,752 450.9 0.42 138
molecule 50 300 54 54 0 7 0 66 || 0.67 048 | 0.71 | 0.76 | 0.76 | 0.88 458 182.3 0.07 35
networkx 50 300 84 36 6 123 103 750 || 0.61 0.49 | 097 | 081 | 0.93 | 0.99 6,073 125.7 0.18 155
pytest-django 51 306 56 36 2 21 25 138 || 0.57 0.52 | 0.60 | 0.59 | 0.73 | 0.68 219 59.1 0.01 7
pytest-xdist 34 204 105 102 1 12 3 150 0.43 0.49 0.55 | 0.88 0.47 0.92 208 105.4 0.01 7
pytorch-lightning 67 402 30 30 0 21 0 126 0.44 0.50 0.91 | 0.50 0.78 0.88 3,336 609.6 0.20 107
trimesh 49 294 78 78 0 26 0 204 0.29 0.49 0.86 | 0.57 0.54 0.91 599 325.4 0.02 22
ultralytics 42 252 79 60 13 17 240 357 || 0.27 0.50 | 0.75 | 0.53 | 0.82 | 0.80 73 524.7 0.02 6
Total or Mean 718 | 4,308 1,121 720 146 | 1,035 | 3,089 | 8,303 || 0.47 | 0.50 | 0.78 | 0.65 | 0.66 | 0.83 5,378 442.0 0.10 103

We semi-automatically examine all test failures. Tests that fail on
some but not all orders for the same commit are potentially flaky.
We rerun each such test on the same order multiple times in an
attempt to reproduce the failure. If the failure is deterministically
reproduced, it is likely OD, and we find the minimal test sequence
that reveals OD flakiness [62]. If the test is not OD, we rerun it 1,000
times to check if it is ND. Other possibly flaky tests only fail with
pytest-xdist [39], we run each such test concurrently with another
test to confirm their Concurrency flakiness. For tests that fail on
all orders for the same commit, we inspect the logs to determine
whether the failures are due to regression changes.

In the 1,121 failed TSRs, we confirm 146 flaky tests and 1,035
regression tests. 10 projects have at least one flaky test. In Table 1,
“Failed tests” shows the number of distinct tests; “Test failures”
shows the number of test failures. Flaky tests are 7x fewer than
regression tests but fail 2.6X more often per test, because flaky tests
have a longer lifecycle, while regressions are detected deterministi-
cally and addressed more quickly [9]. 774 regression tests fail for
only one commit. No regression test fails for over 9 commits. Only
9 flaky tests are fixed in any subsequent commit we examine.

Of all 146 flaky tests, 112 (77%) are OD. ODs are categorized into
Victims (fail if run after polluters) and Brittles (pass only if run after
state-setters) [19, 62, 69]. Of the 112 OD, 107 (95%) are Victims, and
5 (5%) are Brittles. The higher prevalence of Victims matches prior
findings in Python and Java projects [19, 62]. Of the 60 polluter
test sequences we confirm, 14 (23%) have more than one test. This
percentage is greater than a prior study on Java (2%) [62]. Of the 34
non-OD, 6 are Concurrency and fail under pytest-xdist, a Pytest
plugin that spawns multiple processes to run tests. This parallelism
can lead to failures when, e.g., concurrently running tests try to
use the same network port. The other 28 flaky tests are ND, due to
non-deterministic behavior of certain APIs, e.g., random number
generators [5]. The 10 additional Random reruns further expose 34
flaky tests (27 OD and 7 ND; 3 fixed) from 6 projects.

Implication. OD flaky test failures are not uncommon when run-
ning RTP in CI. Developers can effectively identify and annotate
these tests [69, 73]. RTP tool can also help developers distinguish
flaky tests when it is initially deployed or reporting test failures.

5.2 RTP Effectiveness

The most common RTP evaluation metrics are Average Percentage
of Faults Detected per Cost (APFDc) and the simpler APFD [6, 18,

1092

28, 72]. We use APFDc as it considers test runtime not just test
count. APFDc is normalized to [0, 1], so a 0.1 increase reduces the
time to detect all faults by 10% of the TSR time. We compute APFDc
with one-to-one and many-to-one failure-to-fault mappings [61];
they produce similar results, so we present only one-to-one.

Table 1 shows the mean APFDc across TSRs, considering only
regressions from §5.1 as faults to be detected. Table 1 lists the
name prefix of each technique: all RTP techniques (QTF, RecentFail,
SimChgPath, Hybrid) outperform the baselines (Default, Random),
being 38%—-77% better than Default, and 30%—-66% better than Ran-
dom, on average across projects. Hybrid (§4.2) performs the best
(0.83), 77% better than Default (0.47) and 66% better than Random
(0.5). The same test suite can have different durations in different
orders, which can affect RTP effectiveness [68]. We find that the
magnitude of relative difference between the durations of a com-
mit’s Default TSR and its non-Default TSRs is 1%-10% (average 4%)
across projects. TSR durations vary much less than individual test
durations in the same commit, as individual test variations cancel
each other out. Our additional results from simulations rank all
evaluated RTP techniques in APFDc the same as Table 1 [3].

We also evaluate the overhead of PYTEST-RANKING. We collect
its runtime from Reporter’s terminal summary (§2), which includes
the time for computing RTP data and reordering. The average
runtime is 0.1 sec, or 0.03% of the TSR duration. We collect the
Pytest cache sizes after the RTP-ordered TSRs finish, and compare
the uncompressed sizes between the TSR cache and the CI log. The
cache size is 6-538 KB, or 1%-9% (average 5%) of the CI log sizes.

Implication. PYTEST-RANKING finds faults faster with low over-
head on Pytest test suites. Researchers may simulate RTP orders and
should obtain similar RTP technique ranking in APFDc as reruns.

6 Conclusions

We presented PYTEST-RANKING, our RTP tool for Pytest test suites.
Our evaluation on 4,308 GitHub Actions builds of 14 Python projects
shows that our tool integrates well with the Pytest ecosystem, has
a low runtime overhead, and finds test failures faster than baselines.
We hope that these promising results will enable more research
and eventually lead to adoption of RTP in practice.

Acknowledgments

NSF grant CCF-1956374 supported this work. We thank Sam Grayson
and Erkai Yu for their help with UV.

pytest-ranking: A Regression Test Prioritization Tool for Python

References

(1]

(2]

(3]

=

[10]

[11]
[12]

[13

[14]

[15

[16]

[17

[18]

[19

[20

[21]

[22]

[23]
[24]

[25]

[26

[27]

[28

[29]

[30]

[31]

[32

[33]

[

Antonia Bertolino, Antonio Guerriero, Breno Miranda, Roberto Pietrantuono,
and Stefano Russo. 2020. Learning-to-Rank vs Ranking-to-Learn: Strategies for
Regression Testing in Continuous Integration. In ICSE.

Junjie Chen, Yiling Lou, Lingming Zhang, Jianyi Zhou, Xiaoleng Wang, Dan
Hao, and Lu Zhang. 2018. Optimizing Test Prioritization via Test Distribution
Analysis. In ESEC/FSE.

Runxiang Cheng. 2025. Regression Test Prioritization for Modern Software. Ph.D.
Dissertation. University of Illinois Urbana-Champaign.

Runxiang Cheng, Shuai Wang, Reyhaneh Jabbarvand, and Darko Marinov. 2024.
Revisiting Test-Case Prioritization on Long-Running Test Suites. In ISSTA.
Saikat Dutta, Anshul Arunachalam, and Sasa Misailovic. 2022. To Seed or Not to
Seed? An Empirical Analysis of Usage of Seeds for Testing in Machine Learning
Projects. In ICST.

Sebastian Elbaum, Alexey Malishevsky, and Gregg Rothermel. 2001. Incorporating
Varying Test Costs and Fault Severities into Test Case Prioritization. In ICSE.
Sebastian Elbaum, Gregg Rothermel, and John Penix. 2014. Techniques for Improv-
ing Regression Testing in Continuous Integration Development Environments.
In ESEC/FSE.

Daniel Elsner, Florian Hauer, Alexander Pretschner, and Silke Reimer. 2021. Empir-
ically Evaluating Readily Available Information for Regression Test Optimization
in Continuous Integration. In ISSTA.

Emad Fallahzadeh and Peter C Rigby. 2022. The Impact of Flaky Tests on Historical
Test Prioritization on Chrome. In ICSE-SEIP.

GitHub 2025. Caching dependencies. https://docs.github.com/en/actions/writing-
workflows/choosing-what-your-workflow-does/caching-dependencies-to-
speed-up-workflows.

GitHub 2025. GitHub actions. https://docs.github.com/en/actions.

GitHub 2025. List workflow runs. https://docs.github.com/en/rest/actions/
workflow-runs?apiVersion=2022- 11-28#list- workflow- runs- for-a-repository.
GitHub 2025. pytest-ranking. https://github.com/softwareTestingResearch/
pytest-ranking.

GitHub 2025. Repository archive. https://docs.github.com/en/rest/repos/
contents?apiVersion=2022-11-28#download-a-repository-archive-zip.

GitHub 2025. REST API endpoints for commit statuses. https:
//docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#get-
the-combined-status-for-a-specific-reference.

GitHub 2025. Workflow usage limits. https://docs.github.com/en/actions/
administering- github-actions/usage-limits-billing-and-administration.

Milos Gligoric, Lamyaa Eloussi, and Darko Marinov. 2015. Ekstazi: Lightweight
test selection. In ICSE.

Renan Greca, Breno Miranda, and Antonia Bertolino. 2023. State of Practical
Applicability of Regression Testing Research: A Live Systematic Literature Review.
Comput. Surveys (2023).

Martin Gruber, Stephan Lukasczyk, Florian Kroif3, and Gordon Fraser. 2021. An
Empirical Study of Flaky Tests in Python. In ICST.

Christopher Henard, Mike Papadakis, Mark Harman, Yue Jia, and Yves Le Traon.
2016. Comparing White-box and Black-box Test Prioritization. In ICSE.

René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4]: A Database of
Existing Faults to Enable Controlled Testing Studies for Java Programs. In ISSTA.
Jung-Min Kim and Adam Porter. 2002. A History-Based Test Prioritization
Technique for Regression Testing in Resource Constrained Environments. In
ICSE.

Wing Lam, Reed Oei, August Shi, Darko Marinov, and Tao Xie. 2019. iDFlakies:
A Framework for Detecting and Partially Classifying Flaky Tests. In ICST.
Wing Lam, August Shi, Reed Oei, Sai Zhang, Michael D Ernst, and Tao Xie. 2020.
Dependent-Test-Aware Regression Testing Techniques. In ISSTA.

Yafeng Lu, Yiling Lou, Shiyang Cheng, Lingming Zhang, Dan Hao, Yangfan
Zhou, and Lu Zhang. 2016. How Does Regression Test Prioritization Perform in
Real-World Software Evolution?. In ICSE.

Qingzhou Luo, Farah Hariri, Lamyaa Eloussi, and Darko Marinov. 2014. An
Empirical Analysis of Flaky Tests. In FSE.

Qi Luo, Kevin Moran, and Denys Poshyvanyk. 2016. A Large-Scale Empirical
Comparison of Static and Dynamic Test Case Prioritization Techniques. In FSE.
Alexey G. Malishevsky, Joseph R Ruthruff, Gregg Rothermel, and Sebastian
Elbaum. 2006. Cost-Cognizant Test Case Prioritization. Technical Report.

Toni Mattis, Patrick Rein, Falco Dursch, and Robert Hirschfeld. 2020. RTPTorrent:
An Open-source Dataset for Evaluating Regression Test Prioritization. In MSR.
Ronggqi Pan, Mojtaba Bagherzadeh, Taher A Ghaleb, and Lionel Briand. 2022.
Test Case Selection and Prioritization Using Machine Learning: A Systematic
Literature Review. ESE 27 (2022).

Owain Parry, Gregory M Kapfhammer, Michael Hilton, and Phil McMinn. 2021.
A Survey of Flaky Tests. TOSEM 31 (2021).

Qianyang Peng, August Shi, and Lingming Zhang. 2020. Empirically Revisiting
and Enhancing IR-Based Test-Case Prioritization. In ISSTA.

PyPI 2025. BigQuery. https://docs.pypi.org/api/bigquery.

PyPI 2025. pytest-dependency. https://pypi.org/project/pytest-dependency.
PyPI 2025. pytest-order. https://pypi.org/project/pytest-order.

1093

o g
2L

o
ﬂ.

o =
N2

o
A

[65

[66

[67

[68]

[69

[70

[72

[73

(74

FSE Companion ’25, June 23-28, 2025, Trondheim, Norway

PyPI 2025. pytest-random-order. https://pypi.org/project/pytest-random-order.
PyPI 2025. pytest-randomly. https://pypi.org/project/pytest-randomly.

PyPI 2025. pytest-ranking. https://pypi.org/project/pytest-ranking.

PyPI 2025. pytest-xdist. https://pypi.org/project/pytest-xdist/.

Pytest 2025. Cache dir. https://docs.pytest.org/en/7.1.x/reference/reference.html#
confval-cache_dir.

Pytest 2025. Config cache. https://docs.pytest.org/en/7.1.x/reference/reference.
html#config-cache.

Pytest 2025. Configuration. https://docs.pytest.org/en/stable/reference/customize.
html#command-line-options-and-configuration-file-settings.

Pytest 2025. Item. https://docs.pytest.org/en/7.1.x/reference/reference.html#
item.

Pytest 2025. Item node ID. https://docs.pytest.org/en/7.1.x/reference/reference.
html#pytest.nodes.Node.nodeid.

Pytest 2025. Making your plugin installable by others.
//docs.pytest.org/en/stable/how-to/writing_plugins. html#making-your-
plugin-installable-by-others.

Pytest 2025. Parametrize. https://docs.pytest.org/en/stable/how-to/parametrize.
html.

Pytest 2025. Pytest. https://docs.pytest.org/en/stable/.

Pytest 2025. pytest-dev. https://github.com/pytest-dev.

Pytest 2025. Pytest plugin manager. https://docs.pytest.org/en/7.1.x/reference/
reference.html#pytestpluginmanager.

Pytest 2025. pytest_collection_modifyitems. https://docs.pytest.org/en/7.1.x/
reference/reference.html#pytest.hookspec.pytest_collection_modifyitems.
Pytest 2025. pytest_runtest_logreport. https://docs.pytest.org/en/7.1.x/reference/
reference.html#pytest.hookspec.pytest_runtest_logreport.

Pytest 2025. pytest_terminal_summary. https://docs.pytest.org/en/7.1.x/
reference/reference.html#pytest.hookspec.pytest_terminal _summary.

Pytest 2025. Rerun failed tests. https://docs.pytest.org/en/stable/how-to/cache.
html#how-to-re-run-failed- tests-and-maintain- state-between-test-runs.
Pytest 2025. TestReport. https://docs.pytest.org/en/7.1.x/reference/reference.
html#pytest. TestReport.

Pytest 2025. Writing hooks. https://docs.pytest.org/en/stable/how-to/writing_
hook_functions.html#writinghooks.

Python 2025. Entry points. https://packaging.python.org/en/latest/specifications/
entry-points/.

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 1999.
Test Case Prioritization: An Empirical Study. In ICSM.

Gregg Rothermel, Roland H. Untch, Chengyun Chu, and Mary Jean Harrold. 2001.
Prioritizing Test Cases for Regression Testing. TSE 27 (2001).

David Saff and Michael D Ernst. 2003. Reducing Wasted Development Time via
Continuous Testing. In ISSRE.

Ripon K Saha, Lingming Zhang, Sarfraz Khurshid, and Dewayne E Perry. 2015.
An Information Retrieval Approach for Regression Test Prioritization Based on
Program Changes. In ICSE.

August Shi, Alex Gyori, Suleman Mahmood, Peiyuan Zhao, and Darko Marinov.
2018. Evaluating Test-Suite Reduction in Real Software Evolution. In ISSTA.
August Shi, Wing Lam, Reed Oei, Tao Xie, and Darko Marinov. 2019. iFixFlakies:
A Framework for Automatically Fixing Order-Dependent Flaky Tests. In FSE.
Helge Spieker, Arnaud Gotlieb, Dusica Marijan, and Morten Mossige. 2017. Re-
inforcement Learning for Automatic Test Case Prioritization and Selection in
Continuous Integration. In ISSTA.

Per Erik Strandberg, Wasif Afzal, Thomas J Ostrand, Elaine] Weyuker, and Daniel
Sundmark. 2017. Automated System Level Regression Test Prioritization in a
Nutshell. IEEE Software 34 (2017).

Surefire 2025. [SUREFIRE-2041] Ordering test classes and methods according to
-Dtest property. https://github.com/apache/maven-surefire/pull/560.

Ming Tan, Lin Tan, Sashank Dara, and Caleb Mayeux. 2015. Online Defect
Prediction for Imbalanced Data. In ICSE.

UV 2025. UV: An extremely fast Python package and project manager. https:
//docs.astral.sh/uv/.

Hao Wang, Pu Yi, Jeremias Parladorio, Wing Lam, Darko Marinov, and Tao Xie.
2024. Hierarchy-Aware Regression Test Prioritization. In ISSRE.

Ruixin Wang, Yang Chen, and Wing Lam. 2022. iPFlakies: a framework for
detecting and fixing python order-dependent flaky tests. In ICSE Companion.
Ahmadreza Saboor Yaraghi, Mojtaba Bagherzadeh, Nafiseh Kahani, and Lionel C
Briand. 2022. Scalable and Accurate Test Case Prioritization in Continuous
Integration Contexts. TSE 49 (2022).

Pu Yi, Hao Wang, Tao Xie, Darko Marinov, and Wing Lam. 2022. A Theoretical
Analysis of Random Regression Test Prioritization. In TACAS.

Shin Yoo and Mark Harman. 2012. Regression Testing Minimisation, Selection
and Prioritisation: A Survey. STVR 22 (2012).

Sai Zhang, Darioush Jalali, Jochen Wuttke, Kivan¢ Muslu, Wing Lam, Michael D
Ernst, and David Notkin. 2014. Empirically Revisiting the Test Independence
Assumption. In ISSTA.

Jianyi Zhou, Junjie Chen, and Dan Hao. 2021. Parallel Test Prioritization. TOSEM
31 (2021).

https:

https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows
https://docs.github.com/en/actions
https://docs.github.com/en/rest/actions/workflow-runs?apiVersion=2022-11-28#list-workflow-runs-for-a-repository
https://docs.github.com/en/rest/actions/workflow-runs?apiVersion=2022-11-28#list-workflow-runs-for-a-repository
https://github.com/softwareTestingResearch/pytest-ranking
https://github.com/softwareTestingResearch/pytest-ranking
https://docs.github.com/en/rest/repos/contents?apiVersion=2022-11-28#download-a-repository-archive-zip
https://docs.github.com/en/rest/repos/contents?apiVersion=2022-11-28#download-a-repository-archive-zip
https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#get-the-combined-status-for-a-specific-reference
https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#get-the-combined-status-for-a-specific-reference
https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#get-the-combined-status-for-a-specific-reference
https://docs.github.com/en/actions/administering-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/administering-github-actions/usage-limits-billing-and-administration
https://docs.pypi.org/api/bigquery
https://pypi.org/project/pytest-dependency
https://pypi.org/project/pytest-order
https://pypi.org/project/pytest-random-order
https://pypi.org/project/pytest-randomly
https://pypi.org/project/pytest-ranking
https://pypi.org/project/pytest-xdist/
https://docs.pytest.org/en/7.1.x/reference/reference.html#confval-cache_dir
https://docs.pytest.org/en/7.1.x/reference/reference.html#confval-cache_dir
https://docs.pytest.org/en/7.1.x/reference/reference.html#config-cache
https://docs.pytest.org/en/7.1.x/reference/reference.html#config-cache
https://docs.pytest.org/en/stable/reference/customize.html#command-line-options-and-configuration-file-settings
https://docs.pytest.org/en/stable/reference/customize.html#command-line-options-and-configuration-file-settings
https://docs.pytest.org/en/7.1.x/reference/reference.html#item
https://docs.pytest.org/en/7.1.x/reference/reference.html#item
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.nodes.Node.nodeid
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.nodes.Node.nodeid
https://docs.pytest.org/en/stable/how-to/writing_plugins.html#making-your-plugin-installable-by-others
https://docs.pytest.org/en/stable/how-to/writing_plugins.html#making-your-plugin-installable-by-others
https://docs.pytest.org/en/stable/how-to/writing_plugins.html#making-your-plugin-installable-by-others
https://docs.pytest.org/en/stable/how-to/parametrize.html
https://docs.pytest.org/en/stable/how-to/parametrize.html
https://docs.pytest.org/en/stable/
https://github.com/pytest-dev
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytestpluginmanager
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytestpluginmanager
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_collection_modifyitems
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_collection_modifyitems
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_runtest_logreport
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_runtest_logreport
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_terminal_summary
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_terminal_summary
https://docs.pytest.org/en/stable/how-to/cache.html#how-to-re-run-failed-tests-and-maintain-state-between-test-runs
https://docs.pytest.org/en/stable/how-to/cache.html#how-to-re-run-failed-tests-and-maintain-state-between-test-runs
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.TestReport
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.TestReport
https://docs.pytest.org/en/stable/how-to/writing_hook_functions.html#writinghooks
https://docs.pytest.org/en/stable/how-to/writing_hook_functions.html#writinghooks
https://packaging.python.org/en/latest/specifications/entry-points/
https://packaging.python.org/en/latest/specifications/entry-points/
https://github.com/apache/maven-surefire/pull/560
https://docs.astral.sh/uv/
https://docs.astral.sh/uv/

	Abstract
	1 Introduction
	2 Implementation
	2.1 Tool Components

	3 Usage
	4 Experiment Setup
	4.1 Dataset Collection
	4.2 Experiment Procedure

	5 Evaluation Results
	5.1 Analysis of Test Failures
	5.2 RTP Effectiveness

	6 Conclusions
	References

