
© 2025 Runxiang Cheng

REGRESSION TEST PRIORITIZATION FOR MODERN SOFTWARE

BY

RUNXIANG CHENG

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois Urbana-Champaign, 2025

Urbana, Illinois

Doctoral Committee:

Professor Darko Marinov, Chair
Associate Professor Lingming Zhang
Assistant Professor Tianyin Xu
Associate Professor Wei Yang, The University of Texas at Dallas

Abstract

Continuous Integration (CI) is a common practice in software development for increasing

code quality. CI runs regression test suite on each code change to help software developers

find faults in the change. As codebase size and code change frequency have grown rapidly

in modern software development, regression test suite runtime has also increased, thereby

preventing timely debugging feedback to developers.

Regression Test Prioritization (RTP) aims to expose faults in code change sooner by

reordering tests in the test suite, so that the ones likely to fail are run earlier. Despite

that RTP has been extensively studied for nearly three decades, research results of RTP are

rarely put into practice. To facilitate the adoption of RTP for modern software systems,

RTP must be demonstrated effective in speeding up regression fault detection in relevant

and practical testing settings. Moreover, robust and efficient RTP tooling must be available

for practitioners to easily apply RTP research results in popular software ecosystems. This

dissertation takes a step forward in addressing these challenges via three lines of work.

First, this dissertation examines key research findings from prior RTP studies on a newly-

proposed dataset of long-running test suites with real test failures and up-to-date CI practices.

Through extensive evaluation, this dissertation identifies the most effective and efficient RTP

techniques under the impact of realistic CI issues such as flaky test failures.

Second, this dissertation applies traditional RTP techniques for configuration testing, an

emerging but critical testing scenario; it further proposes novel and effective RTP techniques

for configuration testing. This dissertation assesses various factors that influence the effec-

tiveness of RTP in speeding up misconfiguration detection, and provides detailed analyses

and guidelines in applying RTP to configuration tests.

Third, this dissertation presents pytest-ranking, a readily-usable open-source RTP tool

for Python and its most popular testing framework Pytest. This dissertation realistically

evaluates the efficacy of pytest-ranking, demonstrating that pytest-ranking is well

integrated with Python/Pytest ecosystems, can be conveniently deployed into CI, has low

overhead, and can detect faults substantially faster than baselines.

ii

Acknowledgments

Many people have helped me towards the completion of my Ph.D. in ways I am aware or

unaware of. In this acknowledgment, I want to sincerely thank you for your love and support,

making this journey wonderful and fulfilling. I also want to apologize to people who helped

me but I have failed to mention here explicitly, you all have my gratitude for your help.

First and foremost, I want to thank my advisor, Darko Marinov. Darko’s dedication to

the field, sharpness in research, care of students’ well-being, and pursuit of truthfulness and

rigorousness, all have heavily influenced me, and continue to inspire me. I have learned many

things about doing research from Darko, he has also changed how I see and do many other

things beyond research. I want to thank Darko for keeping his faith in me through the highest

high and lowest low of this journey, and his support to all the students around him. One

detailed thing I greatly appreciate is how fast Darko replies to emails and messages, which

must have changed the course of my life in many moments—there are many other things

about Darko that I am thankful for, which I will not exhaust in this acknowledgment.

I want to thank Tianyin Xu, Lingming Zhang, and Owolabi Legunsen for their advising

especially in my junior years. I want to thank Tianyin and Darko for admitting me into

UIUC, along with the other Ph.D. admission members who were involved in this decision

which is pivotal to me. Tianyin guided me through my junior years, he taught me research

ethics and professionalism in conducting research, making sure that I was on the right track,

and doing the right thing from the get-go. Tianyin has also been working with and helping

me throughout my Ph.D.. I deeply thank him, Lingming, and Owolabi for teaching me the

skills and mindset in being a good computer science researcher, in the most honest and

effective ways possible, allowing ample space for me to learn and improve with feedback

on both the big picture and the details. Owolabi and Lingming both taught me ways of

researching, thinking, and writing when I was doing my first and second Ph.D. projects with

them. I am fortunate to have gained valuable knowledge from a glimpse of their research

mindsets and techniques.

I want to thank Reyhaneh Jabbarvand and Wei Yang, who kindly helped me in completing

this work, despite that I have only involved them at a later stage of my Ph.D. journey.

Reyhaneh has given me the opportunity to write funding proposals highly related to this

work. Wei has given this work useful feedback and guidance, as well as valuable suggestions

for its future work and my career development through our discussions.

I am fortunate to have had several internship experiences in industry during my Ph.D..

iii

I want to thank Satish Chandra and Michele Tufano at Google for giving me a valuable

opportunity to work with them on an exciting project. I am also fortunate to be surrounded

and supported by all the team members who are kind and experienced, including Jürgen

Cito, José Cambronero, Pat Rondon, Renyao Wei, Sherry Shi, Aaron Sun, and Daye Nam. I

am thankful for the lessons and work habits that I have learned from them on doing research

in industrial context. At TikTok, I thank Ping Zhou and Wei Tang for hosting my internship,

giving me plenty of freedom and resources to explore interesting research topics, and the other

team members, Yupeng Tang, Fei Liu, and Tongping Liu. At Meta, I thank Mrinmoy Ghosh,

Mehmet Yunt, and Selman Yilmaz for their detailed guidance throughout my internship,

helping me navigate smoothly through the infrastructure. I also want to thank the rest of

the team for continuing to work with and help me tremendously in the research project:

Chris Cai, Xiaodong Wang, Rahul Mitra, Malay Bag, Menglu Yu, Taylor Robie, and Srinath

Mandalapu. I also thank Ting Dai and Sai Zeng at IBM Research for giving me my first

industry research internship experience when I was a junior Ph.D. student, during the special

time of COVID. I want to wholeheartedly thank these people above for working on research

projects and sharing their knowledge with me in cutting-edge industrial environments, giving

me exposure to unique experiences that could be hard to obtain anywhere else.

The computer science Ph.D. program at UIUC provides a solid foundation that makes

my Ph.D. journey possible. I want to thank Reza Farivar and Craig Zilles for giving me

the opportunity to be a graduate teaching assistant for their courses, from which I have

gained teaching and project mentoring experience. I want to thank the advisors from the

graduate advising office from the computer science department, including but not limited

to Jennifer Comstock, Viveka Kudaligama, and Kara MacGregor, for their timely support

on issues I encountered throughout the years of my Ph.D.. I am thankful for the National

Science Foundation (NSF) grants that supported this work (CCF-1763788, 1763906, 1816615,

1942430, 1956374, 2029049, and CNS-1740916, 1956007, 2238045), and support from Meta,

Google, IBM, Futurewei, Microsoft, C3.ai, and Qualcomm. I thank the ACM International

Symposium on Software Testing and Analysis (ISSTA) and International Conference on the

Foundations of Software Engineering (FSE) for publishing chapters of this work; and the

other prestigious conferences and journals for publishing my other research done in Ph.D..

The experience I have with my UIUC peers and collaborators is a large and essential

part of my Ph.D.. Although the unexpected events from COVID and family circumstance

have changed how I interacted with many of these people in the middle of my journey, the

experience remains a source of inspiration and strength to me. I am honored and grateful

that I could share moments with them, know about them, and learn from them. To start, I

want to acknowledge people in my first Ph.D. project, Xudong Sun, Jack Chen, Ran Ang.

iv

The first conference practice talk I attended at UIUC was from August Shi, whom I thank

for setting up a great example that I learned from continuously since then. I want to thank

Wing Lam for showing me the ropes of practicing software engineering and testing research,

after the rest of Darko’s research group had graduated and became faculties, before he also

became a faculty. I also thank my peers who have subsequently joined Darko’s group, whom

I have meaningful research discussions and collaborations with, Shuai Wang, Sam Grayson,

Kaiyao Ke, Yicheng Ouyang, Erkai Yu; as well as some folks from systems research for

the same reason, Gangmuk Lim, Xinyu Lian, Siyuan Chai, Jinghao Jia. I want to deeply

thank the Brett Daniel Software Engineering Seminar, and the people who participated in

it. I am grateful that there is such an effective and transparent platform for me to receive

feedback from so many people on my research, including paper drafts, talks, and research

ideas, allowing me to learn quickly, while letting me give feedback to other people’s work as

well. I want to thank the people that I could still recall the most active in the seminar if they

have not yet been mentioned elsewhere in this acknowledgment: Sasa Misailovic, Madhusudan

Parthasarathy, Angello Astorga, Saikat Dutta, Jacob Laurel, Neil Zhao, Liia Butler, Yifan

Zhao, Jonathan Osei-Owusu, Peilun Zhang, Zixin Huang, Keyur Joshi. Many of these people

have also given me appreciated advice off the seminar. Likewise, I want to thank the people

from the Systems Research Seminar if I have not yet mentioned them elsewhere: Indranil

Gupta, Le Xu, Rui Yang, Haoran Qiu, Federico Cifuentes-Urtubey, Bingzhe Liu. I want to

thank Han Zhao and Julia Hockenmaier for advising, Yifei He and Gargi Balasubramaniam

for collaboration, on a fruitful experience in theoretical machine learning research. I thank

Ruicheng Xian and Yuan Shen for the sporadic but meaningful discussions on research and

Ph.D. lives. Last but not the least, I want to thank Wenyu Wang and Qingrong Chen for

sharing their valuable experiences and advice on research, career, and life with me, when

they were senior students and after they graduated, whom I learn a lot from.

I want to thank Vladimir Filkov, Bogdan Vasilescu, and Zhou Yu for hiring me as their

research assistant during my undergraduate at UC Davis, giving me opportunities to learn

on the way while working with them on important and interesting research projects. I thank

them and their lab members who mentored me at the time, for showing me the possibility of

computer science research.

Lastly, I want to thank my family, including but not limited to my parents and partner,

and my friends kept in touch over the years. Thank you for being here. Thank you for

listening to my problems even when they make the least sense, and for showing support and

wisdom when I make tough decisions.

v

Table of Contents

Chapter 1 Introduction . 1
1.1 Thesis Statement . 2
1.2 Contributions . 3
1.3 Dissertation Organization . 4

Chapter 2 Regression Test Prioritization on Long-Running Test Suites 6
2.1 Overview . 6
2.2 RTP Techniques . 8
2.3 Dataset of Long-Running Test Suites . 12
2.4 Experimental Setup . 20
2.5 Evaluation . 24
2.6 Threats to Validity . 34
2.7 Related Work . 35
2.8 Summary . 35

Chapter 3 Regression Test Prioritization for Configuration Testing 36
3.1 Overview . 36
3.2 Background on Configuration Testing . 39
3.3 Applied and Proposed RTP Techniques . 40
3.4 Experimental Setup . 48
3.5 Evaluation . 53
3.6 Threats to Validity . 64
3.7 Related Work . 64
3.8 Discussion . 65
3.9 Summary . 66

Chapter 4 Regression Test Prioritization Tool for Python 67
4.1 Overview . 67
4.2 Implementation of pytest-ranking . 68
4.3 Usage of pytest-ranking . 71
4.4 Experimental Setup . 72
4.5 Evaluation . 75
4.6 Summary . 84

Chapter 5 Conclusions and Future Work . 85
5.1 Conclusions . 85
5.2 Future Work . 88
5.3 Closing Remark . 91

vi

Appendix A Other Work . 92

References . 93

vii

Chapter 1: Introduction

Software systems are ubiquitous; they control the critical electronic infrastructures, devices,

utilities, and applications that people use. Maintaining software reliability is therefore crucial,

because unexpected program behaviors can emerge from software faults, leading to severe

consequences with negative societal impact [1, 2, 3, 4].

Software developers commonly practice Continuous Integration (CI) to maintain the

reliability of their software [5, 6, 7, 8, 9, 10, 11]. In CI, each change to the software from

developers is pushed through a version control system. The CI service then automatically

launches a CI build for the pushed change; the CI build compiles the changed code and runs

regression testing. Regression testing runs tests on the changed code in the development

environment, with the goal of helping the developers to detect and debug faults introduced

by the change before the change could be deployed into production [12, 13, 14, 15, 16]. The

regression test suite is a list of existing tests, sometimes including new tests written for the

change. Test failures that emerge from regression testing expose potential fault(s); these

failures are provided as debugging feedback to developers. Developers debug and fix the code

leveraging the testing feedback, and then run more CI build(s) on the revised change—they

repeat this process until resolving the regression test failures. Regression testing has been

shown effective and practiced widely [9, 17, 18, 19, 20, 21].

As software systems offer more functionalities and are increasingly integrated into everyday

life, the codebase size and change velocity have also grown rapidly in both proprietary and

open-source software development [22, 23, 24]. Such growth directly increases the CI cost:

regression test suites run longer and must be run more frequently. The prolonged test suite

execution delays development cycles and prevents timely feedback to developers [18, 25, 26].

Researchers have proposed many techniques to improve the feedback efficiency of regression

testing. These techniques can be broadly categorized into (1) Regression Test Selection, (2)

Test Suite Reduction, and (3) Regression Test Prioritization [14, 27, 28]. Regression Test

Selection samples and executes a subset of tests from the entire test suite. Its sampling

algorithms are often based on the change [15, 29, 30, 31]. Test Suite Reduction removes

redundant tests from the test suite with little to no impact on the overall fault detection ability

of the entire test suite against the change [32, 33, 34]. Lastly, Regression Test Prioritization

(RTP) aims to reorder the execution of tests in the test suite to expose failure-inducing faults

sooner [17, 20, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44].

Compared to Regression Test Selection and Test Suite Reduction, RTP is guaranteed safe

(i.e., including all tests that could expose fault in the change) and complete (i.e., including all

1

tests that are transitively affected by the change), because it executes all tests in the test suite.

Although RTP does not reduce the total regression testing cost, it reduces the developers’

time to receive debugging feedback by speeding up regression fault detection. Test rankings

produced by RTP techniques can also be leveraged in test selection and parallelization to

further improve regression testing efficiency [23, 36, 41, 42, 45]. However, although RTP

techniques have been studied for three decades with multiple surveys conducted, RTP research

results have been rarely applied in CI practices [14, 17, 27, 28, 35, 46, 47, 48].

To enable a wider adoption of RTP in large software systems, existing or new RTP

techniques should be demonstrated effective in relevant, practical testing scenarios that have

up-to-date CI practices; RTP tools with robust performance and convenient usage should be

developed for practitioners to apply RTP in popular or emerging software ecosystems.

This dissertation first studies a wide range of popular RTP techniques in realistic cases

where RTP is especially important—long-running test suites [49]. We present the first RTP

dataset of long-running test suites and revisit key research conclusions from prior RTP studies,

to assess the effectiveness of existing RTP techniques in the latest CI context. This dissertation

also applies RTP for configuration testing, and further proposes novel configuration-specific

RTP techniques, with a comprehensive evaluation of these techniques [50]. Modern large-scale

software systems are highly-configurable, where configuration change velocity has greatly

increased and misconfiguration has become a dominant reliability concern. We demonstrate

strong performance results of both the traditional and novel RTP techniques in an emerging

yet critical testing scenario. Lastly, this dissertation presents a readily-usable, open-source

RTP tool for Python and its most popular testing framework Pytest [51]. We realistically

evaluate our tool by deploying it into over a dozen popular Python projects and rerunning

their CI builds on the most popular CI service GitHub Actions. Evaluation results showcase

the tool’s effectiveness in speeding up fault detection, its low overhead, and its high usability.

1.1 THESIS STATEMENT

The thesis statement of this dissertation is the following:

Regression Test Prioritization can improve fault detection cost-effectiveness in practical

regression testing scenarios of modern software.

This thesis statement has the following aspects: we can use RTP techniques to effectively

speed up fault detection in the latest and most relevant regression testing context; we also

can build convenient and effective tools to deploy RTP in popular software ecosystems.

2

This dissertation presents the following work to support this thesis statement: (1) revisiting

key effectiveness results of RTP techniques on our dataset of recent, long-running test suites,

(2) effectively applying traditional RTP techniques and proposing new techniques in the

context of configuration testing, and (3) developing an RTP tool for Python and Pytest

ecosystems with demonstrated efficacy and usability from realistic evaluation.

1.2 CONTRIBUTIONS

The work in this dissertation makes the following main contributions:

• Regression Test Prioritization on Long-Running Test Suites. Because RTP

aims to expose faults sooner and reduce testing feedback time to developers, RTP is

especially important for long-running test suites. While many studies have explored

RTP, they are often based on outdated CI builds from over 10 years ago with test

suites that last several minutes, or builds from inaccessible, proprietary projects.

Contributions: This dissertation presents LRTS, the first RTP dataset of long-

running test suites, with 21,255 CI builds and 57,437 test-suite runs from 10 large-scale,

open-source projects that use Jenkins CI. LRTS spans from 2020 to 2023, with an

average test-suite run duration of 6.5 hours. On LRTS, this dissertation studies the

effectiveness of 59 leading RTP techniques, the impact of failures from flaky tests

and frequently-failing tests on RTP, and RTP for failing tests with no prior failures.

It revisits prior key findings (9 confirmed, 2 refuted) and establishes 3 new findings.

Results show that simply prioritizing faster tests that recently failed performs the best,

outperforming the sophisticated techniques.

• Regression Test Prioritization for Configuration Testing. Configuration changes

are among the dominant causes of failures of large-scale software system deployment.

Given the velocity of configuration changes, typically at the scale of hundreds to

thousands of times daily in modern cloud systems, checking configuration changes is

critical to prevent failures due to misconfigurations. Prior work uses configuration

testing, Ctest [52, 53], a technique that tests configuration changes together with the

code that uses the changed configurations. Ctest can automatically generate a large

number of ctests that can effectively detect misconfigurations, including those that are

hard to detect by traditional techniques. However, running ctests can take a long time

to detect misconfigurations, in situations where delay could be rather costly.

Contributions: This dissertation proposes to apply RTP to reorder ctests to speed up

3

the detection of misconfigurations, given that the traditional RTP has shown promises

in speeding up the detection of regression code faults. This dissertation extensively

evaluates a total of 84 traditional and novel configuration-specific RTP techniques.

The experimental results on five widely used cloud projects demonstrate that RTP

can substantially speed up misconfiguration detection. This dissertation also provides

guidelines for applying RTP to configuration testing in practice.

• Regression Test Prioritization Tool for Python. While RTP has been researched

for almost three decades, with many research techniques proposed, practical tools and

evaluations are sporadic. Moreover, most prior work has only evaluated RTP techniques

by simulating orders, which could miss important issues in test executions if RTP is to

be deployed into CI, such as changed test durations and outcomes across executions,

test-order dependency violations, and overhead of the deployed RTP techniques.

Contributions: This dissertation presents pytest-ranking, a robust tool for Python,

and its most popular testing framework Pytest. We evaluate our tool on 4,308 builds for

14 open-source Python projects running on the GitHub Actions CI. Experiments show

that pytest-ranking integrates well with the Pytest ecosystem, has a low runtime

overhead (0.03% of the test-suite run duration), and finds test failures 37%–75% faster

than the Pytest default and Random orders on average across projects. Our test failure

analysis on 1,121 failed TSRs also finds 146 flaky tests, in which 112 are order-dependent

(OD). Our RTP effectiveness analysis also investigates how test duration variation

and flaky test failure treatment impact the RTP technique effectiveness ranking on

the executed TSRs. Our results demonstrate the practicality and effectiveness of

pytest-ranking, and provide implications of applying RTP in CI.

1.3 DISSERTATION ORGANIZATION

The rest of this dissertation is organized as follows:

Chapter 2: Regression Test Prioritization on Long-Running Test Suites This

chapter presents (1) the RTP dataset of long-running test suites, and (2) a study of popular

RTP techniques on the dataset. We describe the evaluated RTP techniques, and RTP

evaluation settings, e.g., evaluation metrics. This chapter revisits key prior findings of RTP,

and presents new findings, covering three aspects: RTP effectiveness on long-running test

suites, impact of flaky tests and frequently-failing tests to RTP effectiveness, and RTP

effectiveness on prioritizing tests with no prior failures [49].

4

This chapter is based on the paper “Revisiting Test-Case Prioritization on Long-Running

Test Suites”. Proceedings of the 33rd ACM SIGSOFT International Symposium on Software

Testing and Analysis, 2024. Cheng, Runxiang; Wang, Shuai; Jabbarvand, Reyhaneh; Marinov,

Darko. The dissertation author was the primary investigator and author of this work.

Chapter 3: Regression Test Prioritization for Configuration Testing This chapter

presents applied traditional RTP techniques and our developed configuration-specific RTP

techniques for prioritizing configuration tests. This chapter describes the concepts and

implementations of these techniques, our proposed metrics for evaluating configuration test

prioritization, and the study of the effectiveness of these techniques [50].

This chapter is based on the paper “Test-Case Prioritization for Configuration Testing”.

Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and

Analysis, 2021. Cheng, Runxiang; Zhang, Lingming; Marinov, Darko; Xu, Tianyin. The

dissertation author was the primary investigator and author of this work.

Chapter 4: Regression Test Prioritization Tool for Python This chapter presents

the implementation, usage, and evaluation of pytest-ranking, our proposed RTP tool for

Python/Pytest ecosystems. In the evaluation, we run the RTP-reordered test suites, and

analyze the test failures and test runtime variation from the collected test suite runs. We

also report the effectiveness and overhead of pytest-ranking [51].

This chapter is based on the paper “pytest-ranking: A Regression Test Prioritization Tool

for Python”. Proceedings of the 33rd ACM International Conference on the Foundations

of Software Engineering (Demonstrations), 2025. Cheng, Runxiang; Ke, Kaiyao; Marinov,

Darko. The dissertation author was the primary investigator and author of this work.

Chapter 5: Conclusions and Future Work This chapter concludes the dissertation

and provide discussions to the future work that can be done following the work from this

dissertation.

Appendix A: Other Work The appendix lists the other work the dissertation au-

thor conducted during Ph.D. studies, including in parallel to the work presented in this

dissertation [52, 54, 55, 56, 57, 58, 59].

5

Chapter 2: Regression Test Prioritization on Long-Running Test Suites

This chapter presents the RTP dataset of long-running test suites, i.e., LRTS , and our study

of RTP techniques on LRTS . Section 2.1 describes the limitations of prior RTP datasets and

studies, and presents an overview of this work. Section 2.2 describes the leading categories

of RTP techniques. Section 2.3 presents details of LRTS , purging steps of confounding test

failures (i.e., failures of flaky tests and frequently-failing tests) in LRTS , and comparing

LRTS to prior datasets of short-running test suites. Section 2.4 describes evaluation setup,

including RTP effectiveness metrics, failure-to-fault mappings, and experiment procedure.

Section 2.5 presents study results, including RTP effectiveness on long-running test suites

(§2.5.1), impact of confounding test failures on RTP (§2.5.2), and RTP effectiveness on

prioritizing tests with no prior failures (§2.5.3). Sections 2.6–2.7 describe the threats to

validity and related work of this chapter. Section 2.8 provides a concluding summary.

2.1 OVERVIEW

The importance of RTP grows with the size and execution time of the test suite. If a test

suite takes only seconds or minutes to run, then prioritizing tests will not save much time.

In contrast, RTP can be especially important for long-running test suites.

To date, there is a wealth of RTP techniques [14, 17, 27, 28, 35, 46, 47, 48]. Traditional

RTP techniques use code coverage, and prioritize tests that cover more code elements

[35, 60]. However, they have limited applicability, as code coverage is hard to collect [17, 20].

Recent empirical studies of RTP thus focus on techniques that rely on more accessible test

features [28, 36, 37], such as history-based techniques that prioritize tests by their previous

outcomes [14, 38], and time-based techniques that prioritize faster tests [12, 61]. Some

other proposed RTP techniques use information retrieval (IR) [39, 40] or machine learning

(ML) [41, 42, 43, 44] to leverage multiple information sources from CI to prioritize tests.

For example, researchers developed Learning-to-Rank (LTR) RTP with supervised learning

algorithms, and Ranking-to-Learn (RTL) RTP with reinforcement learning algorithms, both

of which were shown effective.

Existing studies have investigated the effectiveness of RTP techniques in different contexts.

Recent studies [36, 37, 40, 41, 62] evaluate RTP techniques on open-source projects. These

studies consider historical test-suite runs and real test failures mostly from Java projects that

use Travis CI [63]. For example, [40] studied IR-based RTP on 3,000 test-suite runs, Bertolino

et al. [41] studied both LTR and RTL RTP, [36] studied LTR RTP on 20 open-source [62]

6

and 3 proprietary projects, and Yaraghi et al. [37] studied LTR RTP on test suites that last

at least 5 minutes from 25 projects. They provide important findings on different techniques.

However, most of their studied CI builds are outdated, e.g., from over ten years ago [64], and

have test suites that are relatively short-running, e.g., on average several minutes (§2.3.3).
As our analysis shows, longer-running test suites (e.g., on average several hours or more)

from recent codebases have different characteristics than prior datasets (§2.3.5), which may

result in different effectiveness and ranking outcomes of existing RTP techniques.

Other studies consider RTP on software from large companies [17, 23, 28, 43, 65, 66, 67].

While providing valuable experience, these studies focus on very few RTP techniques, e.g.,

history-based (§2.2.2). Further, their observations and techniques are based on large testing

infrastructures that are too costly or domain-specific for most open-source projects, such

as prioritization for parallel test jobs at large-scale clusters or specific hardware [17, 66].

These studies also provide limited data for future investigations—their studied project(s) are

inaccessible [23, 43, 66, 67], lack heterogeneity [42, 65], or have rather old artifacts [17].

One key challenge in studying RTP is the lack of up-to-date, high-quality datasets, especially

in cases where RTP can help the most: long-running test suites. Moreover, many popular RTP

techniques have only been studied separately across different datasets and settings—there

has been no recent extensive evaluation of leading RTP techniques in a unified experiment

setup. These challenges hinder researchers and practitioners from developing new research

insights and identifying techniques applicable to their context.

In this work, we introduce the first extensive, high-quality dataset of long-running test

suites, called LRTS , curated from recent CI builds of popular open-source repositories (§2.3).
On LRTS , we evaluate 59 RTP techniques from five leading technique categories: time-based,

history-based, IR-based, learning-based (LTR and RTL) techniques, and cost-cognizant

hybrid techniques (§2.2). We study the effectiveness of these techniques in three contexts:

recent, long-running test suites (§2.5.1); impact of flaky tests and frequently-failing tests

(§2.5.2); and prioritizing failing tests that have no prior failure (§2.5.3). Our study revisits

key findings from recent RTP studies [36, 37, 40, 41, 65] and presents new findings.

This work makes the following contributions:

• We collect LRTS , an extensive dataset focused on long-running test suites. It consists of

21,255 Jenkins CI builds with 57,437 test-suite runs from recent versions of 10 popular,

large-scale open-source GitHub projects. Curated projects have different uses and

are written in Java, Scala, Python, and C++. The builds span from 2020 to 2023,

including 15,852 builds with 30,118 test-suite runs that have failed tests. The test-suite

runs last for 6.5 hours on average (§2.3.3). We are releasing LRTS , with our code on:

7

https://zenodo.org/records/12662090

• We start with 26 basic RTP techniques—2 time-based, 6 history-based, 6 IR-based,

5 LTR, 6 RTL RTP techniques, and the Random baseline. We next apply two cost-

cognizant hybrid RTP approaches to the basic techniques, to construct 33 hybrid

techniques. In total, we evaluate 59 RTP techniques, on the widely-used metric Average

Percentage of Faults Detected per Cost (APFDc) and APFD, under different failure-

to-fault mappings [68]. We further assess how the effectiveness of these techniques is

impacted by confounding test failures (failures of flaky tests and frequently failing tests).

We also study their effectiveness in detecting the first failures of tests throughout the

collected CI history.

• We revisit 11 key findings from recent RTP studies, confirming 9 and refuting 2 findings.

We also present 3 new findings. Table 2.7 provides the summary of our findings. Among

basic techniques, time-based techniques, e.g., running faster tests first, are the most

effective and the least impacted by confounding test failures. Among all techniques,

hybrid techniques that simply combine time-based and history-based heuristics perform

the best, e.g., prioritizing faster tests that have failed recently, outperforming all

sophisticated techniques. The overall ranking of techniques on LRTS is similar to that

of prior work.

2.2 RTP TECHNIQUES

We first overview different RTP technique categories and describe the techniques we use

in our study. We focus on evaluating only previously proposed RTP techniques and do

not promote any new technique to mitigate potential bias in evaluating RTP techniques

on our new dataset. RTP is the problem of finding a test execution order that detects

more faults faster [14, 35]. Depending on the heuristics that guide the ordering, we can

categorize basic RTP techniques in four main categories: time-based, history-based, IR-based,

and learning-based. The fifth category is hybrid RTP techniques that systematically combine

heuristics from other different categories.

2.2.1 Time-based RTP

A simple way of prioritizing tests is sorting them in ascending order by execution time,

expecting that executing more tests within a given time can find more failures [12]. This RTP

category, called Quickest-Time-First (QTF), has been recently shown to rival or outperform

8

https://zenodo.org/records/12662090

more sophisticated RTP techniques on short-running test suites [36, 40, 61]. We evaluate 2

time-based techniques: QTF-Last and QTF-Avg : the former uses the execution time of the

previous test run as the prioritization heuristic, while the latter uses the average execution

time from prior test runs.

2.2.2 History-based RTP

History-based techniques prioritize tests based on the tests’ outcome information from

prior executions—they assume a test that has failed or changed its outcome is more likely

to detect faults in the new code version. History-based techniques can incorporate different

outcome information, such as test failure, test transition, or the association between the test

and changed code files.

Test outcome Two history-based RTP heuristics are most commonly used. Test failure

history considers whether the test has previously failed. Test transition history considers

whether the test outcome has changed (failing to passing, or vice versa). We evaluate 4 history-

based techniques from this sub-category: (1) MostFail prioritizes tests that have a higher

historical failure count [23, 40, 69, 70, 71, 72], (2) LatestFail prioritizes tests that failed more

recently [17, 69, 71, 73], (3) MostTrans prioritize tests that have a higher historical transition

count [36, 74], and (4) LatestTrans prioritizes tests that transitioned more recently [36, 74].

Test outcome and changed file association Test outcome history can be more infor-

mative when associated with the change under test. Researchers thus proposed to trace

the outcome history and changed files, and to prioritize tests whose outcomes were more

related to changed files based on previous test runs [22, 75, 76, 77, 78, 79]. We evaluate 2

history-based techniques from this sub-category: TF-FailFreq prioritizes tests with higher

failure count with respect to the changed files, and TF-TransFreq prioritizes tests with higher

transition count with respect to the changed files [36].

2.2.3 IR-based RTP

IR-based techniques rely on textual similarity to identify the tests that are more relevant

to code changes [39, 40]. They extract code tokens from tests and code (or code change diff),

and process them into a corpus of documents and a query with off-the-shelf IR models. For

a code change presented as a query, an IR-based technique prioritizes tests whose documents

are more similar to the query. IR-based techniques can be configured to use different IR

9

Table 2.1: LTR RTP feature sets.

F1: test history features F2: (Test,File)-history features

Failure count Max (test,file)-failure freq
Last failure Max (test,file)-transition freq
Transition count Max (test,file)-failure freq (relative)
Last transition Max (test,file)-transition freq (relative)
Average duration

F3: (Test,File)-similarity features F4: change features

Min file path distance Distinct authors
Max file path token similarity Changeset cardinality
Min file name distance Amount of commits

models, e.g., Term Frequency-Inverse Document Frequency (TF-IDF) [80] or BM25 [81],

and the amount of context they consider for a code change [40]. For example, NoContext

techniques only use tokens from the exact changed lines to construct the query, WholeFile

techniques use all the tokens from the changed files, and GitDiff techniques use tokens from

the git diff file (same as using 3 lines of context [82]). We evaluate 6 IR-based techniques

from prior work [40] that use BM25 and TF-IDF IR models with the 3 different context

lengths mentioned above.

2.2.4 Learning-based RTP

With the advent of machine learning (ML), a number of RTP techniques use ML algorithms

to predict the ranking of tests. These RTP techniques can be broadly put into two sub-

categories [41]: Learning-to-Rank (LTR) and Ranking-to-Learn (RTL).

Learning-to-Rank LTR RTP techniques use supervised learning algorithms, in which an

ML model is trained on historical CI builds to predict ranking of tests for future builds [23,

27, 36, 37, 41, 43, 72, 83]. LTR techniques train ML models with features from the test,

code or code change, and execution history [36, 37], to predict the probability of test failure,

which then determines the test order. The effectiveness of LTR techniques depends on the

underlying ML model and the training process, even if trained on the same data. The choice

of features can also substantially impact the model performance in LTR RTP.

Prior work evaluated how different ML algorithms impact the effectiveness of LTR tech-

niques [36, 37, 41]. They also explored to what extent the training:testing data ratio, e.g.,

using the first (chronologically ordered) 50% or 75% of the test runs for training and the rest

10

for testing, impacts the outcome of RTP. We revisit the most studied ML algorithm (gradient

boosting trees) and training:testing data ratio (75%) [27, 36, 41]. We use the most effective

features prior work identified that are also easily accessible in CI [36, 37, 84]. Table 2.1 lists

them categorized into four feature sets, which follow the same definitions as in Elsner et

al. [36]. In total, we evaluate 5 LTR techniques, 4 techniques using one set of features each,

and 1 technique using all four feature sets.

Ranking-to-Learn RTL RTP techniques use reinforcement learning (RL) algorithms [41,

42, 85, 86]. In contrast to LTR where a model is trained offline, RTL trains its model

online—RTL RTP is deployed without learning on historical builds, and learns a test ranking

policy for a project at runtime. It continuously (1) ranks tests based on test states of the

current CI build, and (2) receives feedback from the ranking to improve its policy for the

next build. RTL RTP is initially deployed with no prior knowledge, and gradually learns a

policy for prioritizing tests over time as it goes through more builds in the project.

A test state encodes a test’s metadata, e.g., previous outcome and duration. Given all test

states of the current build, RTL RTP selects an action for each test (i.e., giving each test a

priority score) with its current policy or by random exploration. After running the prioritized

test suite, a reward is fed back to the model to improve the current policy—a higher reward

encourages prioritizing a given test state. The effectiveness of RL RTP is sensitive to its

parameters, e.g., RL model choice, data encoded in the test state, and definition of the reward

function. As in prior work [41, 42], we evaluate neural network (NN) and Q-table (Tabl) as

RL agents on three rewards functions: failure count (FailCount), test failure (TestFail), and

time rank (TimeRank). In total, we study 6 RTL RTP techniques.

2.2.5 Hybrid RTP

After describing the basic RTP techniques, we now describe the hybrid RTP techniques,

which combine the heuristics from previous categories for better effectiveness. For example,

we can build a hybrid technique based on MostFail by prioritizing tests not only by higher

failure count but also by shorter execution time. Hybrid approaches have improved the

effectiveness of basic techniques in different RTP settings [40, 50], which motivated us to

include them in our study. We adopt two hybrid RTP approaches from prior work [40]:

cost-cognizant (CC) and cost-history-cognizant (CCH).

Cost-ognizant Given a basic technique that ranks tests based on score s in the ascending

order, a CC hybrid technique prioritizes tests in the ascending order of s ∗ t, where t is the

11

test execution time from the previous run. CC techniques promote prioritizing tests with a

short execution time.

Cost-history-cognizant Given a basic technique that ranks tests based on score s in the

ascending order, a CCH hybrid technique prioritizes tests in the ascending order of s ∗ t/c,
where c is the test’s failure count. CCH techniques promote prioritizing tests that failed

more often per unit of time.

2.3 DATASET OF LONG-RUNNING TEST SUITES

§2.3.1-2.3.2 describe our project selection criteria and the construction of LRTS . §2.3.3
provides more details on LRTS , with an analysis of the distributions of its CI builds and test

failures. §2.3.4 describes how we account for confounding test failures (failures of flaky tests

and frequently failing tests). §2.3.5 compares characteristics of LRTS with recent datasets of

short-running test suites.

2.3.1 Project Selection

We seek projects that are open-source, because they often provide transparent data access

to their recent CI builds, with test failures induced by real faults [62]. In selecting projects,

we prioritize those actively maintained, with a substantial history of commits and builds. A

large number of commits and a long build history increase confidence in generalizing the

empirical findings and claims from the study. The most critical criterion for our work is the

inclusion of projects with long-running test suites, because these projects can benefit the

most from RTP.

We focus on selecting projects from the Apache Software Foundation (ASF) [87] because it

offers a diversity of renowned open-source projects and has been studied by many researchers

for over two decades [88]. While the source code of ASF projects is easy to find, collecting

their build logs is challenging as they use different CI services and organize their CI build

data differently. In particular, they rarely use free services, such as GitHub Actions or Travis

CI, because their test-suite runs are rather long, beyond the usual limits offered in the free

tier of these services [89]. Instead, they mostly use Jenkins CI, on public or private servers.

We consider only ASF projects that preserve CI history on publicly accessible Jenkins

CI servers (e.g., [90, 91]), as these projects can have long-running test suites, and Jenkins

CI provides uniformed API for downloading serialized build data [92]. We select from the

longest-running projects, where the test-suite execution time for the majority of the project’s

12

Table 2.2: Projects in our dataset.

Project Primary use Stars Main PLs SLOC

ActiveMQ Message broker 2K Java 669K
Hadoop Big-data processing 14K Java 4M
HBase Big-data storage 5K Java 1M
Hive Data warehouse 5K Java, HiveQL 2M
Jackrabbit Oak Content repository 381 Java 694K
James Mail server 848 Java, Scala 793K
Kafka Stream processing 26K Java, Scala 905K
Karaf Modulith runtime 669 Java, Scala 186K
Log4j 2 Logging API 3K Java 277K
TVM Compiler stack 10K Python, C++ 818K

most recent CI builds exceeds 30 minutes. Many of these projects delete build history

regularly—our dataset thus includes some CI builds that are no longer available.

Table 2.2 lists the 10 projects in LRTS . All projects consist of several sub-projects (e.g.,

multi-module Maven projects in Java). They use a mix of programming languages (Java,

Scala, Python, and C++) and build systems (8 Maven [93], 1 Gradle [94], and 1 CMake); all

use Jenkins CI. To our knowledge, LRTS is the first open-source dataset for investigating

the effectiveness of RTP techniques on multiple large-scale projects with long-running test

suites and actual CI failures.

2.3.2 Dataset Curation

We collect CI builds with real test failures for each project, and extract the corresponding

test-suite runs and code change data. We use data collection procedure similar to prior

work [24, 37, 40, 62] and describe our differences below.

CI builds We focus on CI builds triggered by PR commits, rather than branch pushes,

because builds for PRs may fail more frequently than builds for a particular branch (e.g.,

trunk). Each PR can have multiple commits and multiple builds. We first collect build

metadata from the CI server, then collect the metadata of the PRs via GitHub API [95].

A Jenkins CI build can have multiple stages [96], similar to how a Travis CI build can

have multiple jobs [37, 64]. In LRTS , we observe some builds having multiple stages, where

each stage has a test-suite run on a different environment, and the test report of that build

records all the runs. For example, a Kafka build can run the same code for four different

environments (JDK 8, 11, 17, and 20) in four stages [97]. Following prior work [36, 37, 40]

13

Table 2.3: LRTS dataset summary. TSR denotes test-suite run.

Project Period (days) #CI build #TSR #Failed TSR

ActiveMQ 827 207 207 109
Hadoop 1,094 1,299 1,299 543
HBase 504 278 553 215
Hive 618 2,056 2,056 1,419
Jackrabbit Oak 745 860 860 639
James 786 2,404 3,147 1,399
Kafka 984 11,843 39,006 24,047
Karaf 959 620 620 174
Log4j 2 436 270 528 162
TVM 631 1,418 9,161 1,411

Total - 21,255 57,437 30,118

Table 2.4: Statistics (averages) on failed TSRs in LRTS . TC denotes test class,
and TM denotes test method.

Project #TC #Failed TC #TM #Failed TM Duration (hours)

ActiveMQ 676 3 6,081 34 4.36
Hadoop 829 6 7,289 24 5.57
HBase 1,061 2 6,369 3 9.28
Hive 1,273 9 40,921 83 26.12
Jackrabbit Oak 1,897 12 19,699 107 3.27
James 1,864 6 34,718 37 2.15
Kafka 1,232 4 19,399 12 7.59
Karaf 205 2 841 2 0.58
Log4j 2 641 3 3,918 4 0.25
TVM 526 3 8,564 37 4.83

Average 1020 5 14,780 34 6.4

that treated each Travis CI ⟨build, job⟩ pair as a test-suite run, we treat the test-suite run of

each ⟨build, stage⟩ pair as a data point for evaluating RTP. We also treat each stage in a

project as having its own CI history, which consists of all builds that included that stage.

Test suite information We obtain test report URLs from build metadata files, and

extract test reports in JSON format via Jenkins CI API [92]. Our process differs from the

extraction of test results from Travis CI [64] because the test report data from Jenkins CI

provides much more uniform information, with no need to parse textual build logs. As a

14

result, LRTS has more accurate information about test runs than datasets built from Travis

CI [24, 37, 40, 62, 64]. Each test report contains the duration, outcome, and name of each

test method and its test class in the test-suite run(s) of the build. It also contains stack

traces for failed tests, and metadata of the run.

Code change information The code change of a PR build is the diff between its PR

commit head (denoted as head) and the branch commit head that head is being merged

into (denoted as base) [64]. We extract head from the build metadata file, and base from

the build log. For each pair of head and base, we extract the code change data via GitHub

API [98], which includes the diff file URL, commit identifiers, authors, and the list of changed

files. We use the diff file URL to download corresponding code change diff.

2.3.3 Dataset Overview

LRTS curates the data of 21, 255 unique CI builds from 10 projects. These builds have

57, 437 test-suite runs (refer to as TSRs), of which 30, 118 (59%) TSRs had at least one

failed test. A build can have more than one TSR if it has more than one stage (§2.3.2).
Table 2.3 provides more details on LRTS [99], including period length; total number of builds,

TSRs, failed TSRs per project. Table 2.4 provides more details on the average number of

test classes, test methods, and duration across failed TSRs. The durations are based on

Jenkins CI test reports in each project’s CI server, by summing up the durations of all

executed tests in each TSR. If tests run in parallel to reduce the total elapsed time, RTP

can prioritize and parallelize tests to find failures sooner [45, 100]. For a fair comparison, as

in prior work [28, 36, 40, 41], we evaluate RTP techniques while considering that each TSR

runs its tests sequentially.

In Table 2.5, we compare LRTS with other datasets in RTP studies since the RTPTorrent

release in 2020 [28, 62]. We omit datasets with synthetic CI failures [45, 101, 102, 103], or

whose long-running test suites come from inaccessible, proprietary projects [36, 84, 85, 86,

104, 105]. Many recent studies use the same set of builds from before 2016 in TravisTorrent or

proprietary projects [17, 42, 62, 63, 64]. In comparison, the builds in LRTS span from 2020

to 2023, reflecting more current CI practices and are suitable for up-to-date RTP studies [27].

We continue to collect build data from these projects to preserve them before they get deleted:

as of now, we have over 32K builds and over 108K TSRs [106].

Table 2.5 shows that the average TSR duration (measured in hours) in LRTS is (1) at

least 18 times larger than the other datasets with multiple projects and (2) similar to the

open-source Google Chrome dataset that has only one project. Table 2.5 also shows that some

15

0 25 50 75 100
0

5

ActiveMQ

0 25 50 75 100
0

10

20 Hadoop

0 25 50 75 100
0

10

HBase

0 25 50 75 100
0

50

Hive

0 25 50 75 100
0.0

2.5

5.0
Jackrabbit Oak

0 25 50 75 100
0

5

James

0 25 50 75 100
0

10

Kafka

0 25 50 75 100
0

5

Karaf

0 25 50 75 100
0.0

0.2

0.4
Log4j 2

0 25 50 75 100
0

5

TVM

500

1000

0

2000

0

1000

0

1000

0

1000

2000

0

1000

2000

0

1000
100

200

250

500

0

500

TS
R

du
ra

ti
on

 (
ho

ur
s)

% CI builds

TS
R

si
ze

 (
#

Te
st

 c
la

ss
es

)

Figure 2.1: Distribution of CI builds by the duration (hours) and size (number of
test classes) of all (not only failed) TSRs. The solid dark lines and left y-axes
show CDFs by TSR duration. The dashed lighter lines and right y-axes show
CDFs by TSR size.

Table 2.5: Comparing RTP datasets.

RTP dataset #Project #TSR Duration

RTPTorrent [62] 20 100K 0.17
Peng et al. [40] 123 3K 0.09
RT-CI [41] 6 3K <0.01
Pan et al. [24] 242 15K 0.35
TCP-CI [37] 25 21K 0.27
Chrome [65] 1 50K 7.96
LRTS (Ours) 10 57K 6.50

prior datasets have more projects, because TravisTorrent collected data from the centralized

Travis CI service that allowed mining 1000+ repositories uniformly, while we need to find

specific Jenkins CI servers for each project. Those projects are also much smaller, with

16

0 25 50 75 1000

20

1 2 3

ActiveMQ

0 25 50 75 100
0

50

1 2 4

Hadoop

0 25 50 75 1000

10

20

1 2 4

HBase

0 25 50 75 100
0

200

2 7 17

Hive

0 25 50 75 100
0

50

100

3 3 7

Jackrabbit Oak

0 25 50 75 100
0

25

50

2 5 12

James

0 25 50 75 100
0

2000

6 20 70

Kafka

0 25 50 75 100
0

20

40

1 3 5

Karaf

0 25 50 75 1000

20

1 2 5

Log4j 2

0 25 50 75 100
0

100

200

3 4 8

TVM

% Failed test classes

#F
ai

le
d

TS
R

Figure 2.2: Distribution of failed test classes by their #failed TSR in each project.
The Q1, Q2, and Q3 values are annotated.

shorter-running test suites and fewer TSRs per project [63]. Moreover, they had less diversity

in programming languages and build systems (mostly in Java, single-module, use Maven).

Overall, LRTS complements the existing datasets with a different set of projects that use

Jenkins CI, with recent builds, and long-running test suites.

Distribution of CI builds Figure 2.1 shows the distribution of builds in LRTS by their

TSR duration (measured in hours) and test-suite size (measured in the number of test classes).

For a build with multiple TSRs, we use the average duration and test-suite size across its

TSRs. In terms of duration, 7 out of 10 projects (all but Hadoop, Karaf, and Log4j 2) have

over 80% of the builds with TSRs that last more than an hour, and Hadoop has over 50% of

the builds with TSRs that last more than an hour. In terms of test-suite size, the number of

test classes per TSR is several hundreds or higher in all the projects. For example, almost

all TSRs in Kafka and TVM executed over 1000 and 400 test classes, respectively. These

statistics show that LRTS consists of longer-running test suites.

17

Distribution of test failures In LRTS , failure frequencies of the failed test classes in a

project follow a long-tail distribution. Namely, most of the failed test classes in a project only

failed a handful of times across builds, while a few test classes failed order(s) of magnitude

more often than the others. Figure 2.2 shows distributions of failed test classes by their

failure counts. In 7 projects, 75% of their failed test classes have failed at most 8 times across

the collected CI history. In all the projects, the failure count of a failed test class is much

smaller than that project’s total number of failed TSRs in Table 2.3—the set of failed TSRs

in each project is contributed by a diverse set of test classes rather than being dominated by

just a few test classes. Each project also has a few test classes that failed much more often

than others. These failures are likely flaky or intentionally ignored by developers [37, 40, 65].

§2.3.4 further describes these confounding test failures.

We also analyze the overlap of failed tests (excluding confounding test failures) across

TSRs of the same multi-TSR build, by computing the Jaccard index of failed tests across

failed TSRs for each build. It is rather low, on average 0.12. Our result shows that failed

tests in TSRs are often different even in the same build, which further indicates that LRTS

consists of diverse test failures.

2.3.4 Confounding Test Failures

Some test failures distract developers and provide little to no value to be detected during

regression testing, and thus should not be prioritized. Datasets of real CI builds may contain

these failures, which can impact the apparent effectiveness of RTP techniques [36, 40, 65,

107, 108]. We call these failures confounding test failures—inspired by the term “confounding

variable” in causal inference: a variable that relates the cause and outcome of interest (e.g.,

faults and test results) but is not of interest itself (e.g., flakiness-induced failures) [109].

We next describe two types of tests that cause confounding test failures—flaky tests and

frequently failing tests—and how we account for them in our study.

Flaky tests Flaky tests are tests that can nondeterministically pass or fail for the same

code under test [110]. Because they may impact the effectiveness of RTP techniques on

detecting regression-induced failures that developers care about, some RTP studies on real

CI failures explicitly account for flaky tests [40, 65, 107, 108].

Popular, large-scale systems often consider flaky tests in CI to some extent [23, 65]. In

LRTS , 5 out of 10 projects (ActiveMQ, Hadoop, HBase, Hive, and TVM) consider potential

flaky test failures by re-running failed tests, using the rerun option in Maven [111] or

Pytest [112]. HBase and Hive also maintain dashboards to proactively run jobs to track flaky

18

tests and exclude them in CI runs [113, 114]. All 10 projects use JIRA [115] or GitHub issues

actively to track the discovery and resolution of flaky tests. Some identified flaky tests are

manually fixed or skipped during testing.

To properly account for flaky test failures in RTP studies, it is crucial to identify these

failures. Some prior work [23, 40] reruns builds multiple times and finds tests with inconsistent

outcomes. Due to resource constraints, we cannot rerun all 30,118 failed long-running TSRs

multiple times [36, 65]. Unfortunately, Jenkins CI test reports do not include “flaky” tag

even when Maven or Pytest has been used for reruns. We thus employ two alternatives to

identify flaky tests in LRTS . Our key insight is to leverage issue trackers that all projects

already actively use.

First, we manually inspect flaky-test-related JIRA and GitHub issues. We downloaded

all issues returned from fuzzy search with the keyword “flaky” on each project’s JIRA or

GitHub issue tracker [116]. We automatically filter out flaky test issues closed before the

earliest build in LRTS ; for the remaining issues, we inspect to determine if they indeed fix a

flaky test and what the exact test name is. Across all projects, we inspected 746 issues and

identified 344 flaky tests with their fix dates. For each identified flaky test, we label all its

failures before the fixed date as flaky test failures and all its failures after the fixed date as

actual regressions.

Second, for a build with multiple TSRs in different environments (§2.3.2), we treat failures

that were not in all its TSRs as flaky. This approach is similar to rerunning [23] but each

rerun is with a different environment—it bears the risk of misidentifying test failures as flaky

due to actual environment-specific faults, but it ensures the remaining test failures are more

likely to be non-flaky as they occurred in multiple environments [24]. Once we identify flaky

test failures, we can remove all such failures from the TSRs.

Frequently failing tests As shown in §2.3.3, for most of the projects in LRTS , some of

the test classes failed frequently across failed CI builds. These tests often fail independent

of the code changes [37], and some of the failures could be due to test flakiness [65]. In

our case, 53% of the frequently failing tests are also identified as flaky tests. Frequently

failing tests are often ignored by developers and have no practical value to be prioritized.

Following prior work [37], we remove these tests by performing an outlier analysis with a

three-sigma rule of thumb—we remove failures of test classes whose failure frequency is above

the mean+ 3 ∗ stdev of all builds for each ⟨project, stage⟩ pair.

19

2.3.5 Comparison with Short-Running Test Suites

Besides having more recent builds and codebases, one key characteristic of LRTS is in its

long-running test suites (§2.3.3), which may lead to different effectiveness and ranking results

of existing RTP techniques than the short-running test suites. Results may differ because

identifying and prioritizing failing tests on longer-running test suites may be more difficult.

One difficulty comes from the fact that longer-running test suites on average have more

tests but not more failing tests. By comparing LRTS and three recently used datasets

(including an extended RTPTorrent) [36, 37, 40], we find that test suites in LRTS on average

have 3–6 times more test classes but still a small number of failures, e.g., four in LRTS and

2–6 in others. The probability of a failure occurring in LRTS is thus 2–4 times smaller.

Further, long-running test suites can have more diverse failures by simply having more tests.

Failed tests in LRTS fail less frequently compared to the other datasets: the number of times

a failed test fails over the number of failed TSRs in a project in LRTS , on average, is 6–13

times smaller.

The other difficulty stems from the increased runtime of tests in long-running test suites.

Beyond having more tests, tests in LRTS , on average, run 10 to 20 times longer than tests in

the other datasets. For example, the 3rd quartile of test class runtime in LRTS and extended

RTPTorrent [36] are 10 and 0.4 seconds, respectively. Longer runtime often indicates that

a test has more dependencies and interacts with more code elements, which can result in

more complex behaviors that are harder to be captured by RTP techniques without code

coverage or dependency information. Our results also show that minor imprecision in the RTP

technique can cause a large penalty in the technique’s failure-finding effectiveness (§2.5.1).
Overall, our analysis shows that projects with a longer TSR runtime often correlate with

other properties such as (1) more tests, (2) longer-running individual tests, (3) more diverse

set of failures, and (4) lower fail ratio (relative number of failures to the number of tests).

Thus, RTP techniques that work well on short-running test suites may not work as well

on long-running test suites. Therefore, it is not obvious a priori which RTP technique can

effectively prioritize failing tests ahead of the passing tests in a much larger test suite, which

motivates our study.

2.4 EXPERIMENTAL SETUP

In this section, we describe our evaluation settings. We also discuss our data collection

process and implementation for the studied RTP techniques and experimental procedure.

20

2.4.1 Evaluation Settings

Failure-to-fault mappings Mapping test failures to the faulty code is crucial for evaluating

RTP techniques—the goal of RTP is to find different faults, not just many failures due to the

same fault. Some prior work injects artificial faults into the code to have the exact mapping

from test failures to the injected faults. Recent studies [36, 40, 62], including ours, consider

actual test failures from CI builds. In such cases, it is difficult to know the exact mapping

without a deep investigation of each TSR. Prior work thus mostly uses two failure-to-fault

mappings while evaluating RTP techniques: FFMapS that assumes that all test failures in

a TSR map to the same fault; and FFMapU that assumes that each test failure in a TSR

maps to a unique fault [36, 40]. We evaluate on both mappings, following prior work [68].

Test granularity To better revisit findings from prior studies in our new context, we use the

same test granularity for prioritization as they use, at the level of test classes [36, 37, 40, 41]

rather than test methods [117, 118] or test suites [17, 119].

Evaluation metrics Common metrics used to evaluate RTP techniques are Average

Percentage of Faults Detected (APFD) [14] and Average Percentage of Faults Detected per

Cost (APFDc) [28, 120, 121]. APFDc is a cost-aware variant of APFD that considers the

cost of test executions [120, 121]. APFDc commonly uses the execution time of the evaluated

TSR as the cost [61, 122]. Thus, it effectively measures how many faults are found per test

execution time. Both metrics are normalized to [0, 1], e.g., a 0.1 increase reduces the time

to detect all faults by 10% of the test suite time on average (or 39 minutes in our studied

projects based on Table 2.4). A small difference can indicate a large time for longer-running

test suites.

The definitions of APFD and APFDc are as followed:

Average Percentage of Faults Detected (APFD). Let n be the number of tests to be run,

m be the number of faults in the regression change, and TFi be the position (in the order) of

the first failed test that detects the ith fault:

APFD = 1−
∑m

i=1 TFi

n×m
+

1

2n
(2.1)

APFD computes the area under the curve between the percentage of detected faults in a

regression change and the percentage of the test suite executed.

Average Percentage of Faults Detected per Cost (APFDc). Let n, m, and TFi be the same

as for APFD, and tj be the execution time of the jth test in the prioritized order:

21

APFDc =

∑m
i=1(

∑n
j=TFi

tj − 1
2
tTFi

)∑n
j=1 tj ×m

(2.2)

APFDc computes the area under the curve between the percentage of detected faults in a

regression change and the percentage of its test suite cost incurred.

2.4.2 RTP Data Collection

We first order all the builds in LRTS chronologically to respect temporal dependencies in

regression testing [36, 78, 123]. For time-based RTP, we collect relevant test execution time

data from builds prior to the current build. We add 0.001 s to all execution times because

Maven and Gradle report execution times as 0.000 s if less than 0.001 s [50]. For history-based

RTP, we collect test outcome data from builds prior to the current build. For IR-based RTP,

we checkout the base code version of the current build and apply the corresponding code

change (diff between base and head). After applying the change, we collect code tokens

from all test files and all changed files to construct documents and query . For LTR RTP, we

collect all features from Table 2.1 following prior work [36, 37].

2.4.3 RTP Technique Implementation

General logic We wrote a generic pipeline to run and evaluate different RTP techniques.

Given an RTP technique, the pipeline first processes the test data to compute the priority

score of each test in the to-be-prioritized test suite. It then ranks the tests in the ascending

order of the scores. For example, to evaluate the MostFail technique on a test suite T , the

pipeline loads the historical failure counts of all tests in T , computes the priority score as the

reciprocal of failure count, and sorts tests by their scores.

IR-based RTP Prior work used an NLP-based or AST-based tokenizer to parse the content

of the collected files into tokens. Both approaches yield similar performance [40]. We use the

NLP-based tokenizer from Peng et al. [40] as it is language-agnostic. Tokens from a test file

are treated as an individual document, and tokens from all the changed files are collectively

treated as the query. The IR model takes test documents and a query as input, and outputs

the similarity score between each test and the code change.

LTR RTP We follow the same data processing, implementation, and training procedure

as prior work [36, 37]. Given that we order LRTS chronologically, we use its first 75% (older

22

Table 2.6: Dataset versions.

Version #Failed TSR

LRTS-All 30,118
LRTS-DeConf 9,683
LRTS-FirstFail 2,076

builds) as training data to the ML algorithms, and evaluate the trained ML models on the

remaining 25% (§2.2.4). Each data sample corresponds to a ⟨TSR, test⟩ pair, represented as a

pair of a feature vector (consisting of features in Table 2.1) and test outcome. Given a TSR

R, LTR RTP predicts the probability of failure for each test t in R based on ⟨R, t⟩’s feature
vector, then prioritizes tests that have higher probabilities. As in prior work, we use gradient

boosting regression model as the ML algorithm, and its lightGBM implementation from

scikit-learn [36, 124, 125]; we use default hyper-parameter values provided by the scikit-learn

package for training [36, 37, 61].

RTL RTP We use the released implementations of RL agents and reward functions [126]

for RTL RTP from Spieker et al. [42], as in prior RTL RTP studies [41, 85, 86]. We evaluate

RTL techniques with the same hyper-parameter values as prior work [41, 85, 86], and new

values that double the number of hidden layers and training iterations for neural network

agent to account for the larger test suites. The effectiveness of different hyper-parameter

configurations is similar [42]; we present the best one.

2.4.4 Experimental Procedure

We use 3 LRTS versions to study RTP: (1) LRTS-All keeps all test failures, (2) LRTS-

DeConf omits identified confounding test failures, (3) LRTS-FirstFail only keeps the first

failure of each non-flaky test over the collected builds of a stage. Table 2.6 lists the number

of failed TSRs for evaluation per version. Each technique has its data collection and possible

training done only on LRTS-All , then we directly evaluate its effectiveness on all versions.

To reduce randomness in the experiments, as prior work [36, 42, 122], we ran each non-LTR

technique 10 times (with 10 random seeds) on each TSR of each project on each dataset

version. For the LTR techniques, we trained the ML algorithm on the same training data of

each project 10 times to obtain 10 ML models per project. We also evaluate a randomized

RTP technique (denoted as Random) to serve as a baseline, which randomly shuffles all tests.

In total, we evaluated 59 RTP techniques: 26 basic techniques, of which 25 are described

23

in §2.2.1-2.2.4, and the randomized baseline; and 33 hybrid techniques, of which 17 use CC

hybrid approach and 16 use CCH hybrid approach. Applying hybrid approaches to a basic

RTP with the same heuristic provides little value, e.g., applying CC to QTF-Last—we thus

omit these combinations. We also omit applying hybrid approaches to RTL RTP because it

solely learns from pre-defined states, actions, and rewards during runtime. Adding external

heuristics would interfere with the learning process.

2.5 EVALUATION

This work aims to answer the following research questions:

• RQ1: How do different RTP techniques perform in detecting real test failures on

long-running test suites from recent builds?

• RQ2: How do failures of flaky tests and frequently failing tests impact the effectiveness

of different RTP techniques?

• RQ3: How do RTP techniques perform in detecting the first failure throughout CI

history for each failed test?

Table 2.7 summarizes the revisited and new findings in our study. For each revisited finding

throughout this section, we describe our expectation of its potential outcome, the actual

outcome, the experiment results, and our analyses.

2.5.1 RQ1: Effectiveness of RTP Techniques

This RQ compares different RTP techniques on LRTS-DeConf that omits confounding

test failures. In Figure 2.3, each box plot shows the distribution of APFDc values for each

technique, while Figure 2.4 shows the distribution of APFD values. For non-learning-based

techniques, the values are from all failed TSRs; for learning-based techniques, the values are

from failed TSRs of the latest 25% of the builds as the older 75% are used for training (and

should not be used for evaluation [23, 36, 37, 78, 123]). Each box plot represents 100 (10*10)

values, for 10 projects and 10 experiment runs. We use average values across TSRs in each

project to weigh all projects equally regardless of the number of TSRs [40, 41, 50].

Evaluation settings For failure-to-fault mappings, because over 70% of the TSRs in LRTS

have multiple failures, the FFMapS values are 20% higher than FFMapU values for each

of APFDc (Figure 2.3) and APFD (Figure 2.4). For the same reason, we also expected

24

Table 2.7: List of findings in our study. A finding from prior work is marked “✓”
if our study confirms the same on LRTS ; it is marked “✗” if a finding differs in
our study from that of prior work. New findings are marked “”.

F1 Different failure-to-fault mappings lead to similar ranking of RTP techniques [40]. ✓

F2 APFD can be misleading and give different ranking of RTP techniques than APFDc
for evaluating the cost-effectiveness of RTP techniques [61, 121].

✓

F3 Basic time-based and history-based techniques can rival or outperform sophisticated
IR-based and learning-based techniques [36, 40].

✓

F4 IR-based techniques perform worse than time-based and history-based techniques [40]
(up to 18% or 11% worse in APFDc without or with hybrid, respectively).

✗

F5 Different configurations, e.g., IR model, context length, have little impact on the
effectiveness of IR-based techniques [39, 40].

✗

F6 LTR RTP technique is among the most effective RTP techniques when training with
all available features [36].

✓

F7 In LTR RTP, training with all features (Fall) outperforms every individual feature
set; execution time and outcome features (F1) outperform associated history and similarity
features (F2 and F3) which outperform change features (F4) [36, 37].

✓

F8 RTL techniques generally perform better than random [42] (up to 23% better in APFDc),
but worse than LTR techniques [41] (up to 34% worse in APFDc).

✓

F9 Cost-cognizant hybrid RTP approaches can substantially improve the effectiveness of
basic RTP techniques [40] (improving APFDc values by 6%–41%).

✓

F10 Among all techniques, hybrid perform the best [40], specifically techniques that
combine time-based and history-based heuristics.

✓

F11 Techniques that rely on test outcome frequency, e.g., MostFail and LTR (F1), are
heavily impaired by confounding test failures [65] (APFDc values drop by up to 15%).

✓

F12 Techniques that favor more recent test history, e.g., LatestFail and RTL (NN-TestFail),
are more resilient to confounding test failures (APFDc values drop by up to 7%).

F13 Time-based and change-aware techniques, e.g., IR-based, are the least affected by the
presence of confounding test failures (APFDc values increase by up to 12%).

F14 Time-based and change-aware techniques are effective in finding the first failures of
tests, followed by Random, then history-based.

the ranking of some techniques to differ between mappings, e.g., when test suites are larger

(§2.3.5), it is more likely that a technique A puts failed tests at both ends of the TSR, while

a technique B puts them in the middle, so A and B would be ranked differently across the

two mappings. However, the ranking of all techniques is similar across mappings for each

metric. By inspecting the prioritized positions of failed tests, we found that the similarity

25

0.0 0.2 0.4 0.6 0.8 1.0
Random

MostTrans
MostFail

TF-TransFreq
TF-FailFreq

LatestTrans
LatestFail
QTF-Last
QTF-Avg Mean

Median

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
IR-WholeFile (BM25)

IR-NoContext (TF-IDF)
IR-NoContext (BM25)
IR-WholeFile (TF-IDF)

IR-GitDiff (BM25)
IR-GitDiff (TF-IDF)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
LTR (F4)
LTR (F2)
LTR (F3)
LTR (F1)

LTR (Fall)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
APFDc-FFMapU

RTL (Tabl-TimeRank)
RTL (Tabl-FailCount)

RTL (Tabl-TCFail)
RTL (NN-FailCount)
RTL (NN-TimeRank)

RTL (NN-TCFail)

0.0 0.2 0.4 0.6 0.8 1.0
APFDc-FFMapS

Figure 2.3: APFDc results of RTP techniques on LRTS-DeConf . Four rows
from top to bottom show the results of (1) time-based, history-based RTP,
and Random baseline, (2) IR-based RTP, (3) LTR RTP, and (4) RTL RTP,
respectively. Two columns from left to right show the value distributions of
APFDc with FFMapU and FFMapS. RTP techniques in each row are organized
in the descending order by their mean APFDc-FFMapU values.

is because each RTP technique ran failed tests either early or late for all TSRs but rarely

ran them in the middle (except Random where failed tests appeared anywhere with uniform

probability). Our overall results confirm the prior finding (F1 ✓), thus we only show results

from one mapping (FFMapU) in the following sections.

For metrics, prior work argued how APFD can be misleading because it does not consider the

test execution time and could rank techniques greatly differently than APFDc [50, 61, 120, 121].

We expect the prior finding to not differ on test suites where tests run longer. Indeed, we

confirm the prior finding (F2 ✓). Comparing Figure 2.3 and Figure 2.4, we can see that while

the ranking of some techniques is similar across APFDc and APFD, the ranking of time-based

and RTL techniques are opposite. We thus focus on APFDc results in the following sections.

26

0.0 0.2 0.4 0.6 0.8 1.0
QTF-Avg
QTF-Last
Random

TF-FailFreq
TF-TransFreq

MostTrans
MostFail

LatestTrans
LatestFail Mean

Median

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
IR-NoContext (TF-IDF)
IR-WholeFile (TF-IDF)
IR-WholeFile (BM25)

IR-GitDiff (TF-IDF)
IR-NoContext (BM25)

IR-GitDiff (BM25)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
LTR (F4)
LTR (F3)
LTR (F2)
LTR (F1)

LTR (Fall)

0.0 0.2 0.4 0.6 0.8 1.0

0.0 0.2 0.4 0.6 0.8 1.0
APFD-FFMapU

RTL (NN-TCFail)
RTL (NN-TimeRank)
RTL (NN-FailCount)

RTL (Tabl-FailCount)
RTL (Tabl-TCFail)

RTL (Tabl-TimeRank)

0.0 0.2 0.4 0.6 0.8 1.0
APFD-FFMapS

Figure 2.4: APFD results of RTP techniques on LRTS-DeConf . Four rows from
top to bottom show the results of (1) time-based, history-based RTP, and Random
baseline, (2) IR-based RTP, (3) LTR RTP, and (4) RTL RTP, respectively. Two
columns from left to right show the value distributions of APFD with FFMapU
and FFMapS, respectively. RTP techniques in each row are organized in the
descending order by their mean APFD-FFMapU values.

Analysis of basic RTP techniques As prior studies [36, 37, 40, 41, 50, 61], we perform

statistical tests on APFDc-FFMapU values to analyze the effectiveness difference across

different techniques. We first perform a one-way ANOVA analysis and find that the APFDc

values across techniques significantly differ (p-value < 0.001). We then perform Tukey HSD

test as a post-hoc test [127], which assesses the difference and puts techniques into different

groups if their APFDc values differ significantly [40, 47, 61, 128]. Groups are named by

letters: “A” represents the best group, and the effectiveness degrades alphabetically. A

technique with multiple letters performs in between these letter groups.

In Table 2.8, “Basic” columns show the results of basic techniques; “CC” and “CCH ”

columns show the results of hybrid techniques after applying CC and CCH hybrid approaches,

respectively. “Avg” shows the mean APFDc values; “G.Cat” and “G.All” show the effec-

27

Table 2.8: APFDc-FFMapU results on LRTS-DeConf . Horizontal lines separate
RTP technique categories.

RTP technique
Basic CC CCH

Avg G.Cat G.All Avg Imp Avg Imp

QTF-Avg .740 A A - - - -
QTF-Last .739 A A - - - -
LatestFail .735 A A .835 13% .797 8%
LatestTrans .728 A A .830 13% .795 9%
TF-FailFreq .627 B BCD .788 25% .773 23%
TF-TransFreq .614 B BCD .777 26% .764 24%
MostFail .613 B BCDE .773 26% - -
MostTrans .598 B CDE .765 27% .743 24%
Random .502 C F - - - -
IR-GitDiff (TF-IDF) .647 A B .767 18% .789 21%
IR-GitDiff (BM25) .633 AB BC .743 17% .771 21%
IR-WholeFile (TF-IDF) .631 AB BCD .761 20% .785 24%
IR-NoContext (BM25) .630 AB BCD .741 17% .770 22%
IR-NoContext (TF-IDF) .630 AB BCD .758 20% .784 24%
IR-WholeFile (BM25) .605 B BCDE .739 22% .767 26%
LTR (Fall) .736 A A .809 9% .781 6%
LTR (F1) .614 B BCD .767 24% .739 20%
LTR (F3) .593 B CDE .706 19% .741 24%
LTR (F2) .588 B DE .727 23% .735 24%
LTR (F4) .505 C F .717 41% .747 47%
RTL (NN-TCFail) .616 A BCD - - - -
RTL (NN-TimeRank) .570 B E - - - -
RTL (NN-FailCount) .511 C F - - - -
RTL (Tabl-TCFail) .504 C F - - - -
RTL (Tabl-FailCount) .495 C F - - - -
RTL (Tabl-TimeRank) .485 C F - - - -

tiveness group from Tukey HSD test within each basic RTP category and across all basic

techniques, respectively; “Imp” columns show the improvement of mean APFDc values from

“Basic” column to the “CC” and “CCH ” column(s).

Time-based and history-based RTP Prior studies have shown the effectiveness of

sophisticated IR and ML RTP techniques in industrial settings [43, 61, 129, 130, 131], while

more recent studies showed the simplest time-based and history-based techniques are equally

effective on short-running test suites [36, 40]. Because longer-running test suites have different

characteristics (§2.3.5), we expect that the simplest time-based and history-based techniques

28

may perform worse than sophisticated techniques.

However, our evaluation confirms the prior finding from more recent studies that time-based

and history-based techniques can match and often outperform the sophisticated IR and ML

techniques (F3 ✓). Table 2.8 shows that QTF-Avg and QTF-Last achieve the top-2 highest

mean APFDc (0.740 and 0.739). Among history-based techniques, prioritizing recently failed

or transitioned tests (LatestFail and LatestTrans) have the highest APFDc (0.735 and 0.728).

They are also in the best effectiveness group with the time-based techniques and one LTR

technique (group A).

To understand why QTF is the most cost-effective, we first analyzed the positions of failed

tests in TSRs after QTF-Avg prioritization. We found that failed tests run much longer than

the majority of the tests in their TSRs—75% of the failed tests in LRTS-DeConf are in 76%

or later positions of their TSRs; on average, failed tests are in 83% positions of their TSRs.

APFD values in Figure 2.3 are very low for QTF. We then study why QTF performs well

even when it orders failed tests late. It turns out that long-running test suites commonly

have a number of tests that run substantially longer than others, e.g., tens of minutes.

These tests are often end-to-end and integration tests that largely contribute to a TSR’s

duration, but QTF runs them last. For example, TestYarnNativeServices from Hadoop runs

for 15 minutes (i.e., 4.5% of Hadoop’s average TSR duration) to start mini-clusters and test

deploying services [132].

IR-based RTP IR-based techniques have been shown to often outperform time-based and

history-based techniques on short-running test suites [40]. We expected the prior finding to

stand on LRTS , because test method bodies in long-running test suites are larger, and IR

RTP is effective precisely because it captures textual relationships between documents [39].

Contrary to our expectation, however, our evaluation results refute the prior finding (F4 ✗).

In Table 2.8, the best IR-based technique, i.e., IR-GitDiff (TF-IDF), achieves a mean APFDc

of 0.647 in group B, worse than the 4 time-based and history-based techniques in group A

that all have APFDc above 0.727. Even when combined with hybrid approaches, IR-based

techniques have lower APFDc values than the best time-based and history-based techniques

(i.e., LatestFail , LatestTrans).

Our results also refute that IR model and query context length configuration substantially

impact the effectiveness of IR-based RTP [40] (F5 ✗). Figure 2.3 shows all 6 IR-based

techniques have similar distributions; Table 2.8 shows that all 6 techniques differ by at most

one effectiveness group, while 4 of them perform statistically the same (group AB).

To understand why IR-based RTP’s effectiveness differs from prior work, we first explore the

difference between LRTS-DeConf and the prior IR RTP dataset (denoted as IRDataset) [40,

29

Table 2.9: IR experiment results.

Variable
Variable value range

<Q1 Q1-2 Q2-3 >Q3

Duration .644 .642 .628 .605
#Failures .679 .672 .640 .569
Fail ratio .693 .686 .607 .577
Chg size .617 .612 .632 .648

133]. In LRTS-DeConf TSRs, the average duration and number of failures are 76 and 2 times

larger, respectively, while the average code change size is 20% smaller. We then perform

controlled experiments on each of these variables in LRTS-DeConf (selecting TSRs by the

percentile ranges of each variable) for all basic IR-based techniques.

Table 2.9 shows our experiment results; each cell is the APFDc-FFMapU values averaged

across all IR-based techniques. From Table 2.9, we observed that IR-based techniques:

(1) perform worse when TSRs have longer durations; (2) perform worse when TSRs have

more failures (“#Failure”) or more failures relative to test suite size (“Fail ratio”); and (3)

perform better when code changes are larger. These results suggest that IR-based techniques

performing worse in our study is likely due to LRTS having longer-running test suites with

more failures. Another possible reason is that smaller code change query in LRTS has less

information, which leads to a lower retrieval accuracy [40].

In addition, we argue that textual similarity is not the perfect indicator of test failure

probability, and the outcome of such imprecision can be amplified on longer-running test

suites. By inspecting IR-prioritized TSRs in LRTS-DeConf , we saw that IR scores of different

tests often differ marginally (e.g., less than 0.0001 in cosine similarity), while their durations

have much bigger difference, especially on long-running test suites (e.g., standard deviation

of test duration in LRTS is 15 times larger than that of IRDataset). Thus, even a minor IR

score difference can substantially impact failure finding effectiveness—during inspection, we

often saw that a failed test class is delayed for hundreds of seconds behind some passed tests

because its code has some more or fewer tokens.

Learning-based RTP We expected LTR RTP to be competitive on long-running test

suites as LTR techniques can model a large amount of test and change data. Indeed, Table 2.8

shows LTR (Fall) is in the best effectiveness group (group A), with the third highest mean

APFDc (0.736) across all techniques (F6 ✓). LTR is effective because its supervised learning

algorithm learns which feature(s) can minimize test outcome prediction loss from historical

builds at training time, and uses those features more often on unseen builds at inference

30

time. We expected Fall to outperform individual feature sets, as using more features is often

better in ML, but we have no expectation on the ranking of individual sets. Our results

confirm prior finding (F7 ✓): using all features (Fall) is the best in LTR; test time and

history features (F1) are better than similarity features (F2, F3) which are better than change

features (F4).

Compared to supervised learning (LTR), reinforcement learning (RTL) has been shown

harder to optimize due to its large search space and random exploration, which leads to

unstable RTP effectiveness [41, 42]. We thus expected, and confirm that, while some RTL

techniques are certainly better than Random [42], they are usually outperformed by LTR

techniques [41] (F8 ✓). Table 2.8 shows that 2 RTL techniques are in better groups than

Random, and 4 other RTL techniques are the same as Random. Most RTL techniques are in

worse groups than most LTR techniques.

We also evaluated effectiveness degradation with time and found it only for LTR techniques

in 4/10 projects, likely due to the common ML issue of distribution shift, where data of

the latest builds become less similar to the older builds used for training. Because many

LTR/RTL techniques perform no better than simpler techniques, while requiring elaborated

effort to develop (feature engineering) and maintain (retraining) [27, 36, 37], we recommend

time-based and history-based techniques over current learning-based ones.

Analysis of hybrid RTP techniques We expected the evaluated cost-cognizant hybrid

approaches to only marginally improve basic RTP techniques on longer-running test suites

(based on §2.5.1). To our surprise, they lead to a much bigger improvement because of the

high cost-effectiveness of test time and outcome heuristics as observed from basic time-based

and history-based techniques (F9 ✓). Table 2.8 shows CC and CCH approaches improve

the mean APFDc of basic techniques by 9%-41% and 6%-47%, respectively. Table 2.8 further

shows that fusing heuristics from the best basic RTP techniques QTF-Last and LatestFail

gives LatestFail+CC that achieves the highest APFDc (0.835) among all techniques (F10 ✓).

2.5.2 RQ2: Impact of Confounding Test Failures

Recent studies use real CI datasets that have confounding test failures [36, 37, 41, 62, 134],

and detecting these failures earlier in RTP may provide no value to the developers [37, 40, 65,

107, 108]. However, there is very limited evaluation on the effectiveness of RTP techniques

under the impact of confounding test failures [40, 65, 107]—prior work has only studied how

flaky tests impacted one time-based, two history-based, and a few IR-based techniques on

short-running test suites [40] or single-project dataset [65]. In this RQ, we aim to provide a

31

broader investigation on a wider range of RTP techniques under the impact of confounding

test failures. Compared to prior work, we evaluate 3 times more RTP techniques on a

10-project dataset (with the first evaluation of LTR and RTL RTP), and consider both flaky

tests and frequently-failing tests.

Following prior work [65], we evaluate RTP techniques on two versions of the dataset—one

version considers confounding test failures as relevant failures that need to be investigated

(LRTS-All), while another version does not (LRTS-DeConf). We then compare the evaluation

results between both versions.

We perform the same statistical analysis as in RQ1 (§2.5.1) and present our results in

Table 2.10, which compares the mean APFDc values and effectiveness group of techniques

between LRTS-DeConf and LRTS-All (it also presents results on LRTS-FirstFail , which

we discuss in the next RQ). The top-5 techniques, with the highest APFDc values, on each

dataset version are bolded.

We expected RTP techniques that rely on calculating test outcome frequency to be the most

impaired by confounding test failures, because failure count can easily include confounding

test failures. From LRTS-All to LRTS-DeConf in Table 2.10, we indeed observe significant

drops in the ranking and APFDc values for techniques using test outcome frequency, e.g.,

MostFail and LTR (F1), which confirms the prior finding [40, 65] (F11 ✓).

However, not all history-based techniques are heavily impacted by confounding test failures—

in Table 2.10, LatestFail , LatestTrans , and LTR (Fall) are in top-5 on both LRTS-All and

LRTS-DeConf . Our results show that techniques that account for recent history (either

by updating heuristic with recent builds or by weighing with other features) are resilient

(F12).

We also find that time-based and change-aware techniques are the least impacted by

confounding test failures (F13). From LRTS-All to LRTS-DeConf : QTF techniques rise

to the best with large increases in APFDc; IR-based techniques also have higher APFDc.

Overall, we recommend LatestFail , QTF, and LTR (Fall) as they outperform others when

properly accounting for confounding test failures, and LTR (Fall) should be checked to not

overly rely on outcome frequency features.

2.5.3 RQ3: Effectiveness on First Failures

Failing builds are relatively common in practice [65, 107]. For example, 52% of the TSRs

(and 75% of the CI builds) in LRTS fail. Accordingly, uncommon failures, such as failures

from tests that have been passing, may be more worthy of developer’s attention as they are

more likely due to recent change. Moreover, although history-based techniques have been

32

Table 2.10: Mean APFDc-FFMapU and effectiveness group of RTP techniques on
all three versions of LRTS .

RTP technique LRTS-DeConf LRTS-All LRTS-FirstFail

QTF-Avg .740 A .671 CD .796 A
QTF-Last .739 A .677 CD .798 A
LatestFail .735 A .795 A .467 DE
LatestTrans .728 A .788 A .464 DEF
TF-FailFreq .627 BCD .666 CD .440 EF
TF-TransFreq .614 BCD .656 D .422 F
MostFail .613 BCDE .720 B .312 G
MostTrans .598 CDE .701 BC .313 G
Random .502 F .502 I .504 D
IR-GitDiff (TF-IDF) .647 B .589 EF .691 B
IR-GitDiff (BM25) .633 BC .576 FG .667 BC
IR-WholeFile (TF-IDF) .631 BCD .576 FG .679 B
IR-NoContext (BM25) .630 BCD .579 FG .666 BC
IR-NoContext (TF-IDF) .630 BCD .583 EFG .680 B
IR-WholeFile (BM25) .605 BCDE .557 FG .632 C
LTR (Fall) .736 A .764 A - -
LTR (F1) .614 BCD .724 B - -
LTR (F3) .593 CDE .548 GH - -
LTR (F2) .588 DE .618 E - -
LTR (F4) .505 F .505 I - -
RTL (NN-TCFail) .616 BCD .549 GH - -
RTL (NN-TimeRank) .570 E .516 HI - -
RTL (NN-FailCount) .511 F .481 I - -
RTL (Tabl-TCFail) .504 F .508 I - -
RTL (Tabl-FailCount) .495 F .501 I - -
RTL (Tabl-TimeRank) .485 F .517 HI - -

shown effective (e.g., LatestFail), they often rely on failure history that is only informative

for tests that had failed. But many tests often may not fail, e.g., 67% of the executed tests in

LRTS had never failed. It is important to know how techniques prioritize failing tests that

have no prior failures. This RQ thus studies the effectiveness of RTP techniques in detecting

the first failure of each test in our CI history.

We evaluate on LRTS-FirstFail that only keeps the first failure of each non-flaky test. The

first failures are with respect to the entire CI history, not the failures that transition a test

suite from passing to failing [24, 73]. We omit learning-based techniques, because the latest

25% of the builds used for evaluating learning-based RTP have insufficient first failures to

make generalizable observations.

33

The LRTS-FirstFail columns in Table 2.10 show that all history-based techniques perform

as Random, because they prioritize tests based on failures, so tests without prior failures

are prioritized randomly. In fact, history-based techniques are even worse than Random on

a build if all previously failed tests pass but a new test fails. But they can be better than

Random on a build if both a new test and some previously failed tests fail.

Time-based RTP remains the most effective in this RQ (F14). Overall, our study has

shown that the simplest QTF stands as the most cost-effective RTP technique across different

RQs we studied. IR-based techniques also outperform Random when they prioritize tests

similar to the change, which indicates that test failures in LRTS-FirstFail are more often

related to current changes compared to LRTS-All or LRTS-DeConf . Our results motivate

novel RTP techniques that lexicographically prioritize tests by history-based heuristics, and

use time-based or IR-based to break ties.

2.6 THREATS TO VALIDITY

External validity The threats to external validity lie in the generalizability of our study.

We use real build data from a heterogeneous set of projects. We evaluate on a large number of

CI runs with statistical analyses as prior work [36, 37, 40, 47, 61, 128]. To reduce threat from

the evaluated RTP techniques, we use the same RTP data collection [36, 40, 42], settings,

and implementations as prior work [36, 37, 40, 41, 42]. To reduce threat from randomness,

we run all experiments 10 times [36, 41, 42] To reduce threat from flaky tests [23, 36, 37],

we perform both manual inspection and automated filtering (§2.3.4). We then evaluate all

techniques on our dataset with and without failures from the identified flaky tests. Due to

high cost of running test suites, we do not run the generated test orders [135].

Internal validity The main threats to internal validity lie in the potential bugs of our

techniques and experimental scripts. To address such threats, we regularly check the collected

data and our experimental results with unit tests and manual examination.

Construct validity The threats to construct validity mainly lie in our evaluation metrics.

To reduce such threats, we use the two most widely-used metrics for evaluating RTP techniques:

APFDc and APFD. We also evaluate on metric Normalized Rank Percentile Average (NRPA),

as in a few prior studies on RTL RTP [41, 85, 136], but NRPA cannot differentiate different

RTP techniques (values are mostly the same to the third decimal place) in our experiment,

and we thus omit detailed results.

34

2.7 RELATED WORK

RTP techniques RTP has been extensively studied as summarized in several surveys [14, 17,

27, 28, 35, 46, 47, 48]. Besides the techniques in §2.2, prior work has also proposed techniques

based on code coverage [35, 60], adaptive random testing [137], constraint solving [138], and

genetic algorithms [139]. RTP has been applied to mutation testing [140], fault localization

and repair [141, 142, 143, 144], testing configurable systems [50, 145, 146], and deep neural

networks [147, 148]. We focus on studying techniques most widely used in recent work [36,

37, 40, 41, 42, 65].

RTP datasets and studies RTP datasets are crucial for studying RTP techniques.

Mattis et al. [62] listed RTP datasets prior to 2020 and released RTPTorrent that curated

real CI builds from 20 projects via TravisTorrent. Prior to RTPTorrent, only 18 RTP

datasets entirely consisted of real CI builds, and only two of them made their TSR data

available [42, 149]. RTP studies in industrial settings exist but provide limited data for future

work [17, 23, 43, 66, 67, 84]. Recent studies on open-source datasets extend RTPTorrent

with proprietary projects [36, 84], and some collect their own RTP datasets from more Travis

CI Java projects [24, 37, 40, 41, 65, 85].

2.8 SUMMARY

We present LRTS , an extensive dataset focusing on recent, long-running test suites with

21,255 CI builds and 57,437 test-suite runs (average duration of 6 hours) of 10 large-scale, open-

source projects that use Jenkins CI. On LRTS , we evaluate the effectiveness of 59 techniques

from 5 leading RTP technique categories on longer-running test suites and on prioritizing

tests with no prior failure. We also study the impact of confounding test failures on these

techniques. Our study both revisits major findings (9 confirmed and 2 refuted) from prior

work and establishes 3 new findings on the effectiveness and ranking of RTP techniques. We

show that the best techniques combine the simplest time-based and history-based heuristics,

e.g., prioritizing faster tests that have failed recently.

35

Chapter 3: Regression Test Prioritization for Configuration Testing

This chapter presents our work on RTP techniques for configuration testing. Section 3.1

describes the challenges in configuration, and presents an overview of our work on apply-

ing RTP for configuration testing. Section 3.2 provides the background in configuration

tests. Section 3.3 describe the concept of our applied as well as proposed RTP techniques

for configuration testing: non-peer-based RTP techniques which include the traditional

techniques (§3.3.1) and configuration-specific techniques, peer-based configuration-specific

RTP techniques (§3.3.2), and hybrid RTP techniques (§3.3.3). Section 3.4 describes the

experimental setup, including our proposed metrics for evaluating configuration test prioriti-

zation effectiveness. Section 3.5 presents our evaluation results of comparing the techniques

described in §3.3. Section 3.6 and 3.7 describe the threats to validity and related work of this

work, respectively. Section 3.8 further discusses the implications of our results in practice,

and highlights future directions of this work. Section 3.9 provides a concluding summary.

3.1 OVERVIEW

Besides source-code changes, configuration changes are among the dominant causes of

failures in large-scale software system deployments. In fact, configuration changes can be

much more frequent than code changes. Many companies are deploying configuration changes

to production systems hundreds to thousands of times a day [150, 151, 152, 153], hence

misconfigurations become inevitable. For example, 16% of the service-level incidents at

Facebook are induced by configuration changes [154], including major outages that turn

down the entire service [155, 156], and misconfigurations were reported as the second largest

cause of service disruptions in a main Google service [157]. The prevalence and severity of

misconfigurations have been repeatedly reported by many failure studies [158, 159, 160, 161,

162, 163, 164, 165, 166].

Recently, Ctest has been proposed as a promising technique for configuration testing, i.e.,

testing a configuration before deployment [52, 167]. Ctest can effectively detect misconfigura-

tions. The key idea of configuration testing is to connect configuration changes to software

tests, so that configuration changes can be tested in the context of code affected by the

changes. In this way, configuration testing can reason about the program behavior under

the actual configuration values to be deployed and detect sophisticated misconfigurations

that can hardly be detected by rule-based validation [154, 168, 169, 170, 171] or data-driven

approaches [153, 172, 173, 174, 175, 176, 177, 178, 179]. Attractively, our prior work [52]

36

shows that configuration test cases, or ctests, can be generated by parameterizing existing

software tests abundant in mature software projects—up to 83.2% of existing tests can be

transformed into ctests.

At a high level, a ctest is a software test parameterized by a set of configuration parameters.

Running a ctest instantiates each parameter with a concrete value (e.g., the default value,

the current value in production, or a new value to be deployed to production). Given a

configuration change, all the ctests which are parameterized by at least one of the changed

parameters are selected to run. Because one configuration parameter can parameterize many

ctests, a configuration change can require running a large number of ctests. For example,

some configuration changes from the HDFS project require running more than 2,000 ctests

on average, which is over half of the total number of tests in that project [52]. Overall, in

the Ctest dataset of five open-source projects (HCommon, HDFS, HBase, ZooKeeper, and

Alluxio) [52], the number of ctests per configuration parameter is 1–3,069 (average 821), and

a configuration change modifies 1–29 (average 6) parameters.

One main challenge in adopting configuration testing in continuous deployment is the time

required to detect misconfigurations. This test-running time is on the critical path from

the point where configuration changes are made to the point where they are deployed to

production. For example, in the Ctest dataset, the time to run all ctests ranges from 20

minutes to 230 minutes (with an average of 97 minutes) per project. Given the velocity

of configuration changes in modern deployment cycles [153, 154, 166], misconfigurations

inevitably happen. With the large number of ctests to run before deployment, the time to

detect the misconfiguration is crucial, because developers cannot start troubleshooting until

the misconfiguration is detected. The time to detect the misconfiguration can greatly affect

configuration deployment.

We are the first to address the cost of configuration testing using RTP. Traditionally, RTP

aims to order regression tests to expose code bugs faster during software evolution. Inspired

by traditional RTP, we aim to leverage RTP techniques to order ctests to substantially speed

up misconfiguration detection for configuration changes.

We extensively evaluate 84 RTP techniques on the large Ctest dataset [52], with 7,974

ctests for five open-source projects and 66 real-world configuration change files collected

from public Docker images that have some misconfigured parameter values. Our experiments

with configuration changes do not involve code changes, matching realistic scenarios where

only a new configuration is about to be deployed. We start with 16 basic RTP techniques:

(1) randomized as the baseline, (2) traditional techniques based on code coverage, (3) quickest-

time-first (QTF) technique, (4) recently proposed techniques based on information retrieval

(IR), and (5) our novel configuration-specific RTP techniques.

37

We next enhance the basic RTP techniques using two sources of inspiration. First, using

the idea of cost-cognizant RTP [120, 121], we enhance basic RTP techniques with the

test execution time to design hybrid RTP techniques. Second, inspired by cross-checking

configurations of multiple system instances used in troubleshooting systems such as the

Microsoft PSS [152, 180, 181], we design a new family of peer-based RTP techniques that

consider the test outcomes of ctests on related configuration changes. The insight is to

prioritize earlier ctests that detected misconfigurations of a parameter in peer deployments,

because these ctests are likely effective for the parameter change regardless of the value.

Following Microsoft PSS, our peer-based RTP techniques are privacy preserving and do

not use potentially sensitive value information of peer deployments but use only parameter

names.

Our study leads to the following key findings:

• Among basic techniques, QTF yields competitive performance and often outperforms so-

phisticated techniques (e.g., based on code coverage or IR) and even some configuration-

specific techniques (e.g., based on parameter-coverage and stack traces) by up to 22%

(using an APFDc-like metric, §3.4.2).

• Hybrid RTP techniques that enhance basic techniques with the test execution time

improve the performance of basic techniques by up to 27%. Our results confirm

that hybrid, cost-cognizant RTP techniques are effective, even in the new domain of

configuration testing.

• Peer-based RTP techniques can outperform other techniques and improve the perfor-

mance of RTP even further by 15%. The results encourage sharing configuration test

outcomes for the same project: “make friends and don’t test alone!”

This work makes the following contributions:

• We reduce the time to find misconfigurations, one of the main challenges of adopting

configuration testing in real-world continuous deployment process.

• We evaluate 84 traditional and ctest-specific RTP techniques for configuration testing,

and we have released our code and data at https://github.com/xlab-uiuc/ctest_

prio_art.

• We analyze the effectiveness of RTP for ctests and find highly promising results for

reducing the time to find test failures and thus detecting misconfigurations early.

38

https://github.com/xlab-uiuc/ctest_prio_art
https://github.com/xlab-uiuc/ctest_prio_art

3.2 BACKGROUND ON CONFIGURATION TESTING

Configuration testing is a testing technique for detecting misconfigurations (manifesting

as failing tests) to prevent them from being deployed to production systems. The basic

idea is to connect software tests with the specific configuration to be deployed. In this way,

configuration testing can test configuration changes in the context of code that is affected

by the changed configuration. A configuration test case (ctest) is parameterized by a set of

configuration parameters. Running a ctest instantiates each of its input parameters with

an actual configuration value to be deployed to production. Like regular software tests,

ctests exercise the program and check (via assertions) that program behavior satisfies certain

properties (e.g., correctness, performance, security). Figure 3.1 illustrates an example ctest

from prior work [52].

Ctest (configuration testing) differs from approaches that explore multiple configurations,

e.g., configuration-aware testing, combinatorial testing, or misconfiguration-injection test-

ing [145, 146, 182, 183, 184, 185, 186, 187], which sample representative configurations or

misconfigurations through systematic or random exploration of the enormous space of value

combinations. Systematic exploration can be prohibitively expensive due to combinatorial

explosion [184], while random exploration can have a low probability of covering all the values

that will be deployed [185]. Ctest has neither the cost of systematic exploration nor the low

coverage of random exploration. Ctest focuses on testing only one specific configuration that

is to be deployed to the production system.

A ctest t̂(P̂) is parameterized by a set of configuration parameters P̂ . Running a ctest

instantiates each parameter p ∈ P̂ with a concrete value as an argument. P̂ is typically a

small subset of all the configuration parameters (denoted as P).
A system configuration is defined as the values of all the configuration parameters, denoted

as C =
⋃

i=1..|P|{(pi 7→ vi)}, i.e., it assigns a value vi to every parameter pi ∈ P. Running a

ctest instantiates each parameter pi ∈ P̂ with its value in the system configuration vi such

that (pi 7→ vi) ∈ C.

A configuration change updates the values of a subset of the configuration parameters. A

configuration change is in the form of a configuration file diff D. To test a given D, not all

available ctests are run. A ctest t̂(P̂) is selected to test a given D if at least one configuration

parameter in D is in the input parameter set P̂ . A configuration diff, D, passes if all selected

ctests pass, and it fails if any selected ctest fails. Figure 3.2 gives an example of configuration

testing for a given configuration file diff.

Overall, ctests check whether the configuration to be deployed has some misconfigurations,

which will manifest as ctest failure(s). RTP for ctests pushes this further by trying to detect

39

public void ctestGetMasterInfoPort() {...}
@Ctest

The value of needed is 6
and is larger than 5 in the
configuration change.

/* jetty-server-9.3.27.v20190418.jar */

protected void doStart() {
if (needed > max)
throw new IllegalStateException(String.format(
“Insufficient threads...”));

}

max = conf.getInt(“hbase.http.max.threads”);
/* http/HttpServer.java */

...

Configuration Change
- hbase.http.max.threads = 10
+ hbase.http.max.threads = 5

Figure 3.1: A ctest which exercises doStart with the value to be changed and
detects the misconfiguration.

these misconfigurations, if any, as soon as possible by first running ctests that are more likely

to fail for the new configuration.

3.3 APPLIED AND PROPOSED RTP TECHNIQUES

We next present all the RTP techniques we study for reducing the cost of detecting

misconfigurations in configuration testing. §3.3.1 presents basic RTP techniques that do not

require peer configuration changes, while §3.3.2 presents basic RTP techniques that analyze

the correlation between peer configuration changes and test failures to achieve more precise

test prioritization. Lastly, §3.3.3 further introduces hybrid RTP techniques that combine

basic peer-based or non-peer-based techniques with test execution time. Table 3.1 summarizes

the notation for all evaluated RTP techniques.

3.3.1 Non-peer-Based RTP

The non-peer-based RTP techniques include both traditional RTP techniques widely

studied for regression testing (§3.3.1) and new RTP techniques we design for configuration

testing (§3.3.1).

Traditional RTP techniques We study the following traditional RTP techniques:

Code-Coverage-Based RTP. RTP techniques based on code coverage have been extensively

evaluated [14, 35, 47] and are still widely used for comparisons against newly proposed

techniques [40, 188]. Code-coverage-based RTP techniques determine the test execution order

40

+ p1 = 2
+ p2 = true

- p1 = 0.1
- p2 = false

p1 = 0.1
p2 = false
p3 = foo
p4 = /data
p5 = 250

t1(Pt1), Pt1 = {p1,p2}
t2(Pt2), Pt2 = {p2,p3}
t3(Pt3), Pt3 = {p3}
t4(Pt4), Pt4 = {p3,p4}
t5(Pt5), Pt5 = {p4,p5}

t1(p1,p2)
t2(p2,p3)

// Config file

// Config file diff

// Ctest suite

// Selected ctests

> ctest config.diff
mvn test –Dtest=t1(p1=2,p2=true)
mvn test –Dtest=t2(p2=true,p3=foo)

// Run selected ctests

Figure 3.2: An overview of configuration testing for a configuration file diff. Only
t1 and t2 are selected to run because they may be affected by the configuration
change. The ctest framework [189] is built on top of Maven.

based on the code coverage of each test. For example, the total technique sorts tests in the

descending order of the number of code elements (e.g., methods or statements) covered by

each test, while the additional technique sorts tests in the descending order of the number of

code elements covered by each test but uncovered by the already prioritized tests [60]. In

the literature, code-coverage-based RTP has been widely studied at both the method and

statement granularities [47]. Thus, we also evaluate total and additional code-coverage-based

RTP at both method (denoted as Covmtot and Covmadd) and statement granularity (denoted as

Covstot and Covsadd).

IR-Based RTP. Techniques based on Information Retrieval (IR) have been recently proposed

and shown effective in Regression Test Prioritization [39, 40]. IR-based techniques transform

the RTP problem into an IR problem and address it with off-the-shelf retrieval models (e.g.,

TF-IDF [80] and BM25 [81]). A typical IR-based technique extracts code tokens from test

files to form a corpus of documents, and represents code change information (e.g., tokens

extracted from code change diff) as the query. In this way, a similarity value can be computed

between the query and each test document. Tests that are more similar to code changes

are prioritized earlier to detect problematic changes faster. We implement and evaluate the

IRhigh and IRlow techniques with BM25, as it has shown the best results [39, 40].

QTF-Based RTP. The Quickest-Time-First (QTF) technique simply orders all the tests

in the ascending order of their execution time in prior testing runs [12]. Although simple,

the QTF technique has been shown to be competitive compared with state-of-the-art RTP

techniques for regression testing [61]. Therefore, we also evaluate QTF in the context of

configuration testing.

41

Table 3.1: Notation for all evaluated RTP techniques.

RTP category Notation

Traditional (§3.3.1)

Method-level code-coverage-based Covm

Statement-level code-coverage-based Covs

IR-based with high tokenization IRhigh

IR-based with low tokenization IRlow

Quickest-Time-First QTF

Configuration-specific (§3.3.1)

Change-unaware parameter-coverage-based PC
Change-aware parameter-coverage-based PCD

Change-unaware stack-trace-based ST
Change-aware stack-trace-based STD

Peer-based (§3.3.2)

All configurations Confall

Configurations sharing parameter changes ConfDP

Configurations sharing parameter coverage ConfPC

Configurations sharing root causes ConfRC

Shared parameter coverage with peers ParaPC

Shared root causes with peers ParaRC

Hybrid Models (§3.3.3)

Cost-cognizant-divide hybrids ∗+CCdiv

Cost-cognizant-break-tie hybrids ∗+CCtie

Others

Total techniques ∗tot
Additional techniques ∗add
Randomized order Random

Configuration-specific RTP techniques We further design the following RTP techniques

specifically for configuration testing:

Parameter-Coverage-Based RTP. Inspired by traditional RTP techniques based on code

coverage, we propose novel RTP techniques based on parameter coverage. Following the

definition of ctest (§3.2), each ctest t̂(P̂) can test a non-empty set of input configuration

parameters P̂ . We treat P̂ as the parameters covered by t̂. We propose total and additional

RTP techniques based on such parameter coverage, denoted as PCtot and PCadd, respectively.

We also consider the parameter change information to design change-aware, parameter-

42

coverage-based RTP. For each configuration change D, the set of changed parameters is

denoted PD. For each ctest t̂(P̂), we determine its priority based on the set of covered

changed parameters, i.e., P̂ ∩ PD. Change-aware parameter coverage prioritizes ctests that

are more relevant to the configuration change, thus can potentially detect misconfigurations

earlier. We evaluate both total and additional techniques based on change-aware parameter

coverage, denoted as PCD
tot and PCD

add, respectively.

Stack-Trace-Based RTP. Different ctests may read and test the same parameter in differ-

ent invocation contexts and thus may have different capabilities in detecting problematic

parameter changes. For example, two ctests t̂1(P̂1) and t̂2(P̂2) may read p ∈ P̂1 ∩ P̂2 in

different source code locations, and the invocation contexts can be used to prioritize the two

reads. Thus, we use the invocation contexts for each parameter read for more precise ctest

prioritization.

A ctest t̂(P̂) instantiates each parameter p ∈ P̂ by reading its value from configuration

file(s) via API calls provided by the configuration management class(es) in the system. The

ctest infrastructure [52, 189] intercepts the configuration APIs and logs the stack trace of

each API invocation during generation of ctests from regular tests (and not necessarily during

ctest execution). The set of methods within the invocation contexts for all parameter reads

of each test can be extracted from the stack traces and leveraged for RTP. We implement

both the total and additional techniques based on such information, denoted as STtot and

STadd, respectively.

While STtot and STadd consider all the methods from all stack traces where t̂ reads all

the parameters from P̂ , the change-aware variants for a configuration change D consider

all the methods from all stack traces where t̂ reads only the parameters from P̂ ∩ PD. The

total and additional techniques for this change-aware variants are denoted as STD
tot and STD

add,

respectively.

3.3.2 Peer-Based RTP

We now present a family of new ctest RTP techniques, termed peer-based RTP, that

consider the test outcomes of ctests from related, peer configurations. Data from peer

systems have been used in troubleshooting systems such as the Microsoft PSS [152, 180, 181],

e.g., PeerPressure utilizes configuration data from peer machines to infer root causes of

misbehavior [152]. Inspired by this idea, peer-based RTP prioritizes ctests that detected

misconfigurations of a parameter in peer deployments, as these ctests are likely to be effective

for the parameter change regardless of the value.

Deploying peer-based RTP can be done via a server/database that receives, anonymizes,

43

and stores failed configurations and ctest outcomes from internal or community sources,

to be used for future prioritization, e.g., PeerPressure utilized the GeneBank database to

troubleshoot misconfigurations at Microsoft [152]. Specifically, our peer-based RTP are

privacy preserving and do not use potentially sensitive values of peer deployments.

The general definition of peer-based RTP is simple. Let D be a configuration change to be

tested by a ctest suite T , and S be a set of peer configuration changes (D /∈ S) that have

been tested. A peer-based RTP technique orders T based on various statistics collected from

S. Depending on the granularity of the peer analysis, we propose two categories of peer-based

techniques, at the configuration granularity (§3.3.2) and the parameter granularity (§3.3.2).
Given a ctest t̂, D, and information from S, each technique computes a set of elements

X(t̂, D, S) for the ctest; these sets can be ordered using a total (Xtot) or additional (Xadd)

approach, and we evaluate both on all categories of peer-based techniques.

We illustrate all our proposed techniques using the example shown in Figure 3.3. It contains

a configuration change D, its ctest suite T, and a set of peer configuration changes S. Note

that each change is with respect to some default configuration and lists parameters whose

values changed. The root-cause information specifies the misconfigured parameter(s) that

caused a ctest to fail on a configuration change (e.g., only p3 caused t1 to fail on D1). Empty

cells indicate that the test passed. Thus, T has three types of orders for D: optimal (run

passing t3 last), sub-optimal (run t3 second), and worst-case (run t3 first).

Techniques at the configuration granularity We now discuss RTP techniques based

on peer configuration changes at different granularity levels:

All Configurations (Confall). The Confall set of each ctest t̂(P̂) is simply the set of all peer

configuration changes where t̂ failed:

Confall(t̂, D, S) = {D′ ∈ S | Fail(t̂, D′)} (3.1)

where Fail(t̂, D′) indicates that t̂ failed on a peer configuration change D′. For the

example in Figure 3.3, Confall(t1, D, S) = {D1, D2, D3, D4}, Confall(t2, D, S) = {D1, D2, D3},
and Confall(t3, D, S) = {D1, D2, D3, D4, D5}. Thus, Confalltot orders T as t3-t1-t2, and Confalladd

can order T as t3-t2-t1 or t3-t1-t2. According to the root causes of D, both techniques only

produce worst-case orders of T.

Confall is change-unaware and can prioritize earlier a ctest that failed many peer configura-

tion changes even if they share no changed parameter(s) with D, degrading T ’s performance

in detecting the misconfigurations in the parameters changed in D. Thus, all the following

peer-based RTP techniques are change-aware and consider which parameters have changed

44

T = {t1, t2, t3}
t1(Pt1), Pt1 = {p2, p3, p4, p5}
t2(Pt2), Pt2 = {p1, p6}
t3(Pt3), Pt3 = {p2, p4}

// Ctest suite

S = {D1, D2, D3, D4, D5}
D1, PD1 = {p1, p2, p3, p4}
D2, PD2 = {p1, p2, p4}
D3, PD3 = {p1, p4}
D4, PD4 = {p4, p5, p6}
D5, PD5 = {p4}

// Peer config changes

D, PD = {p1, p2, p3}

// Current config change

// Root causes of ctest failures

t1 t2 t3
D1 {p3} {p1} {p4}

D2 {p4} {p1} {p4}
D3 {p4} {p1} {p4}

D4 {p5} {p4}

D5 {p4}
D {p3} {p1}

Figure 3.3: An example to illustrate peer-based RTP.

for better prioritization.

Configurations Sharing Parameter Changes (ConfDP). The ConfDP set of each ctest t̂(P̂)

restricts the set to peer configuration changes that have changed parameters in common1

with D:

ConfDP (t̂, D, S) = {D′ ∈ S | PD′ ∩ PD ̸= {} ∧ Fail(t̂, D′)} (3.2)

For our example, ConfDP (t1, D, S) = {D1, D2, D3}, because PD1 ∩ PD = {p1, p2, p3}, PD2 ∩
PD = {p1, p2}, and PD3 ∩ PD = {p1}. Similarly, ConfDP (t2, D, S) = {D1, D2, D3} and

ConfDP (t3, D, S) = {D1, D2, D3}. Both ConfDP
tot and ConfDP

add can produce all 6 permutations

of T because all 3 ctests have the same priority.

While more precise than Confall, ConfDP could include D′ when changed parameters in

common between D′ and D are not even read by t̂. In this way, a larger set for ConfDP may

not indicate that t̂ is more effective in detecting misconfigurations on the current changed

parameters read by t̂. Therefore, we next consider parameter coverage information for more

precise RTP.

Configurations Sharing Parameter Coverage (ConfPC). The ConfPC set of each ctest t̂(P̂)

further restricts the set to peer configuration changes that have changed parameters in

common with D and also some parameter(s) in common read by t̂:

ConfPC(t̂, D, S) = {D′ ∈ S | PD′ ∩ PD ∩ P̂ ̸= {} ∧ Fail(t̂, D′)} (3.3)

For our example, ConfPC(t1, D, S) = {D1, D2} because PD1 ∩ PD ∩ Pt1 = {p2, p3} and

PD2∩PD∩Pt1 = {p2}, while PD3∩PD∩Pt1 = {}. Similarly, ConfPC(t2, D, S) = {D1, D2, D3} and

1Note that it considers only parameter names and not values.

45

ConfPC(t3, D, S) = {D1, D2}. Both ConfPC
tot or ConfPC

add can order T as t2-t1-t3 or t2-t3-t1.

Either technique has 50% probability of producing an optimal or sub-optimal order of T, and

produces no worst-case order.

ConfPC may still be imprecise when the exact parameter(s) that caused t̂ to fail on D′ are

not in PD′∩PD∩P̂ , which happens when the root-cause parameter(s) of t̂ on D′ are not in PD,

thus not in PD′ ∩ PD. In such a scenario, even if the technique prioritizes ctests with larger

ConfPC , the misconfiguration detection efficiency on D may not improve simply because the

root-cause parameter(s) of the peer configuration changes are not in PD. Therefore, we next

consider the root-cause parameter information.

Configurations Sharing Root Causes (ConfRC). The ConfRC set of each ctest t̂(P̂) further

restricts the set to peer configuration changes whose root-cause misconfigured parameters

are also changed in D:

ConfRC(t̂, D, S) = {D′ ∈ S | RC(t̂, D′) ∩ PD ̸= {} ∧ Fail(t̂, D′)} (3.4)

RC(t̂, D′) is the set of root-cause misconfigured parameter(s) that actually caused the failure

of t̂ in configuration change D′. Note that RC(t̂, D′) ⊆ P̂ because a parameter must be read

by t̂ (i.e, in P̂) to be a root cause of the failure of t̂.

In Figure 3.3, ConfRC(t1, D, S) = {D1} because only RC(t1, D1) ∩ PD = {p3} is non-empty.

Similarly, ConfRC(t2, D, S) = {D1, D2, D3} and ConfRC(t3, D, S) = {}. ConfRC
tot orders T as

t2-t1-t3, and ConfRC
add can order T as t2-t1-t3 or t2-t3-t1. The probability of producing an

optimal order of T is 50–100%, and no worst-case order is produced.

While ConfRC is more precise than the earlier peer-based techniques, it requires to maintain

the root-cause information for all failed peer configuration changes. Developers could record

such information while debugging misconfigurations, but such information may not always

be available (§3.4.3).

Techniques at the parameter granularity We now discuss our peer-based techniques

based on individual parameters in peer configurations at different precision levels. Confall

and ConfDP techniques do not consider parameter coverage and thus have no parameter-

granularity counterparts.

Shared Parameter Coverage with Peers (ParaPC). The ParaPC set of each ctest t̂(P̂) is the

set of parameters from peer configuration changes in ConfPC(t̂, D, S) described in §3.3.2:

ParaPC(t̂, D, S) =
⋃

D′∈S, Fail(t̂,D′)
PD′ ∩ PD ∩ P̂ (3.5)

Collecting for each ctest the parameters instead of failed peer configuration changes

46

explores another possibility where peer-based RTP could prioritize earlier ctests that failed

on a relatively smaller number of peer configuration changes but a larger set of configuration

parameters from the changes.

For our example, ParaPC(t1, D, S) = {p2, p3}, ParaPC(t2, D, S) = {p1}, and ParaPC(t3, D, S) =

{p2}. ParaPC
tot orders T as t1-t2-t3 or t1-t3-t2. ParaPC

add orders T as t1-t2-t3. The probability

of producing optimal orders of T is 50–100%, with no worst-case order produced, which is an

overall improvement to the counterpart (ConfPC) from §3.3.2.
Shared Root Causes with Peers (ParaRC). The ParaRCset of each test t̂(P̂) is the set of

parameters from peer configuration changes in ConfRC (t̂, D, S) described in §3.3.2:

ParaRC(t̂, D, S) =
⋃

D′∈S, Fail(t̂,D′)
RC(t̂, D′) ∩ PD (3.6)

For our example, ParaRC(t1, D, S) = {p3}, ParaRC(t2, D, S) = {p1}, and ParaRC(t3, D, S) =

{}. Both ParaRC
tot and ParaRC

add can order T as t1-t2-t3 or t2-t1-t3. The probability of

producing optimal orders of T is thus 100%, which improves over the counterpart (ConfRC)

from §3.3.2.

3.3.3 Hybrid RTP

Various RTP techniques have been reported to benefit by additionally considering test

execution time [12, 40, 120, 121]. For example, the cost-cognizant additional code-coverage-

based technique [121], which considers the additional code coverage per time unit for each

test, can substantially improve the additional technique in terms of the time for detecting

regression faults. Therefore, besides all the basic RTP techniques introduced in §3.3.1–3.3.2,
we introduce hybrid techniques that combine the basic techniques with test execution time.

Inspired by the prior work in cost-cognizant RTP [12, 40, 121], we define and implement two

generic cost-cognizant hybrid RTP models. We apply both models to all aforementioned RTP

techniques to construct hybrid RTP techniques, and evaluate their prioritization effectiveness

for ctests.

Cost-cognizant-divide Following the traditional cost-cognizant RTP techniques, the Cost-

cognizant-divide (CCdiv) model constructs hybrid RTP techniques that prioritize tests in the

descending order of the input tests’ priority values per time unit, i.e., the original priority

values divided by the test execution time. For example, a hybrid additional code-coverage

RTP technique with CCdiv model (Covmadd+CCdiv) prioritizes the test with the largest value of

the number of uncovered methods divided by the test execution time. CCdiv is semantically

47

equivalent to CC described in §2.2.5, where CCdiv prioritizes tests with higher final scores

while CC prioritizes tests with lower final scores.

Cost-cognizant-break-tie We further study how to use time information in the Cost-

cognizant-break-tie (CCtie) model. It constructs hybrid RTP techniques that order tests that

are “tied” by the basic RTP technique (i.e., multiple tests have the same priority score) in

the ascending order of their test execution time (as QTF). For example, hybrid technique

Covmtot+CCtie orders the tied tests with QTF when multiple tests have the same amount of

covered methods.

3.4 EXPERIMENTAL SETUP

3.4.1 Research Questions

This work aims to answer the following research questions:

• RQ1: How do basic non-peer-based RTP techniques perform in detecting real-world

misconfigurations?

• RQ2: How do hybrid non-peer-based RTP techniques perform compared with the basic

non-peer-based techniques?

• RQ3: How do peer-based RTP techniques perform compared to non-peer-based RTP

techniques?

3.4.2 Metrics

Common metrics to evaluate traditional RTP techniques are Average Percentage of Faults

Detected (APFD) and Average Percentage of Faults Detected per Cost (APFDc). §2.4.1
from Chapter 2 has provided more details on both metrics. APFDc is a cost-aware variant of

APFD that considers the cost of test executions [120, 121]. In the context of configuration

testing, however, test failures are caused by misconfigurations and not (code) regression

faults. Thus, we adapted the definition of APFD and APFDc to derive two new metrics for

evaluating RTP techniques for configuration testing: Average Percentage of Misconfigurations

Detected (APMD) and Average Percentage of Misconfigurations Detected per Cost (APMDc).

The only difference in the definitions is that APFD and APFDc consider code bugs, while

our metrics consider misconfigurations. Higher APMD and APMDc values (i.e., closer to

48

0 20 40 60 80 100
0

50

100

Area=67%

Test-Case Order O1: t1-t2-t3

0 20 40 60 80 100
0

50

100

Area=79%

Test-Case Order O1: t1-t2-t3

0 20 40 60 80 100
0

50

100

Area=67%

Test-Case Order O2: t2-t1-t3

0 20 40 60 80 100
0

50

100

Area=71%

Test-Case Order O2: t2-t1-t3

0 20 40 60 80 100
0

50

100

Area=50%

Test-Case Order O3: t1-t3-t2

0 20 40 60 80 100
0

50

100

Area=54%

Test-Case Order O3: t1-t3-t2

0 20 40 60 80 100
% Ctest suite executed

0

50

100

Area=33%

Test-Case Order O4: t3-t1-t2

0 20 40 60 80 100
% Ctest suite cost incurred

0

50

100

Area=29%

Test-Case Order O4: t3-t1-t2

Pe
rc

en
ta

ge
 o

f D
et

ec
te

d
M

isc
on

fig
ur

at
io

ns

Figure 3.4: An example to illustrate APMD (first column) and APMDc (second
column) for four test-case orders.

1.0) indicate all misconfigurations are detected earlier, while lower values (i.e., closer to 0.0)

indicate all misconfigurations are detected later.

We illustrate APMD and APMDc for the following example scenario. Let T = {t1, t2,
t3} be a ctest suite for a configuration change D, PD = {p1, p2}; t1 failed on p1, t2 failed on

p2, and t3 passed; the execution costs of t1, t2, and t3 are 1, 2, and 3 seconds, respectively.

Figure 3.4 illustrates the APMD and APMDc values for four orders (i.e., O1, O2, O3, and O4)

of T; from left to right, O1 and O2 are optimal (run passing t3 last), O3 is sub-optimal (runs

t3 second), O4 is the worst-case (runs t3 first).

Average Percentage of Misconfigurations Detected (APMD) APMD is our adaption

of APFD [35] in the context of configuration testing. Let n be the number of configuration

tests to be run, m be the number of misconfigured parameters in the configuration change,

49

and TFi be the position (in the order) of the first failed configuration test that detects the

ith misconfigured parameter:

APMD = 1−
∑m

i=1 TFi

n×m
+

1

2n
(3.7)

APMD computes the area under the curve between the percentage of detected misconfigu-

rations in a configuration change and the percentage of the test suite executed, as illustrated

in Figure 3.4.A larger area always implies faster overall detection for all misconfigurations in

the current configuration change. For example, O1 detects 50% of the misconfigurations in D

(i.e., p1) after executing 33.3% of T (i.e., t1), and O1 detects 100% of the misconfigurations

in D (i.e., p1, p2) after executing 66.7% of T (i.e., t1, t2). Thus, the APMD value of O1 is

67% as 1− 1+2
3·2 + 1

2·3 = 0.67 using Formula 3.7. However, like APFD, APMD is cost-unaware.

Although O1 and O2 have the same APMD value, O1 is actually more cost-effective than O2

because O1 halves the cost to detect the first misconfiguration compared to O2.

Average Percentage of Misconfigurations Detected per Cost (APMDc) APMDc

considers the cost, as in APFDc, which commonly uses test execution time [61, 122]. Let n,

m, and TFi be the same as for APMD, and tj be the execution time2 of the jth configuration

test in the prioritized order:

APMDc =

∑m
i=1(

∑n
j=TFi

tj − 1
2
tTFi

)∑n
j=1 tj ×m

(3.8)

Similar to APMD, APMDc computes the area under the curve between the percentage

of detected misconfigurations in a configuration change and the percentage of its test suite

cost incurred, as illustrated in Figure 3.4. For example, the total cost of T is 6 seconds; O1

detects 50% of the misconfigurations in D after incurring 17% of the total cost (i.e., 1 second

from t1), and O1 detects 100% of the misconfigurations in D after incurring 50% of the total

cost (i.e., 1 second from t1 and 2 seconds from t2). Thus, the APMDc value of O1 is 79% as
(1+2+3− 1

2
·1)+(2+3− 1

2
·2)

(1+2+3)·2 = 0.79 using Formula 3.8. The APMDc value of O2 is lower than that

of O1, showing that APMDc can properly distinguish the more cost-effective order.

APMDc, like APFDc, more precisely captures the cost/time that developers would actually

experience to detect all misconfigurations. Prior studies [61, 121] show that APFD can rank

RTP techniques for regression faults differently than APFDc, and thus APFD is less reliable.

We still evaluate both APMD and APMDc to check if the same holds for RTP techniques in

2Note that the time for APMDc is measured when running tests on the changed configuration, while the
time used to prioritize tests (in QTF and hybrid techniques) is from running tests prior to the change.

50

Table 3.2: Configuration change dataset.

Project Version #Change
Avg #Param

Avg #Ctest
All Misconf.

HCommon 2.8.5 20 3.75 1.05 955.75
HDFS 2.8.5 16 5.19 1.31 1680.12
HBase 2.2.2 12 8.33 1.92 1254.25
ZooKeeper 3.5.6 14 6.57 1.71 74.36
Alluxio 2.1.0 4 13.75 1.25 949.00

the new application domain of configuration testing.

3.4.3 Dataset Collection

We build our evaluation dataset from the Ctest dataset [52], which contains 66 configuration

changes with misconfigurations collected from real-world Docker images on Docker Hub [190,

191] for five widely-used projects: HCommon, HDFS, HBase, ZooKeeper, and Alluxio. The

dataset also includes ctests for these projects. To compute APMD and APMDc, we ran

ctests on all configuration changes and collected test outcomes and execution time.

We also identified the root-cause misconfigured parameter(s) for each test failure. Root-

cause information is necessary to precisely compute APMD and APMDc for any RTP

technique. (Prior research on regression testing has likewise had to map each test failure to the

code fault(s) to compute APFD and APFDc [120, 121].) It is also necessary for constructing

peer information for some peer-based RTP techniques (§3.3.2). Automated root-cause

localization such as delta debugging [192] is not applicable because misconfigurations are not

monotone due to configuration dependencies [171]. While several advanced misconfiguration-

diagnosis techniques exist [193, 194, 195, 196, 197, 198], we manually localized the root

causes to ensure the precision; most failure-inducing misconfigured parameters can be easily

identified as root causes by inspecting failure logs. Besides the techniques that need root

causes, all others are fully automatic. We excluded flaky tests from the dataset using best-

effort reruns [199]. Table 3.2 shows the version, number of configuration changes, and average

numbers of parameters, misconfigured parameters, and ctests per change of each project.

3.4.4 Implementation

We implemented all the studied RTP techniques in Python 3. Our infrastructure for test

information collection and test prioritization is written in Java and Python.

51

Test information collection We next discuss how we collected the necessary test in-

formation required by the studied RTP techniques. We used OpenClover [200] to collect

code coverage at statement and method granularity (§3.3.1). To collect ctest execution time

(§3.3.1, §3.3.3), we ran each ctest 5 times prior to configuration changes on the same machine,

and used the averages as the time for prioritization. Execution times reported as 0.000 by

Maven are changed to 0.001 because Maven rounds off time to 3 decimal places. For IR data

(§3.3.1), we implemented a parser in Java 8 with JavaParser 3.18.0 [201] to collect tokens

from test class files for all evaluated projects. We also performed an automated step of ctest

generation with the open-sourced Ctest prototype [189] to collect invocation contexts for

stack-trace-based RTP techniques (§3.3.1). We directly collected parameter coverage (§3.3.1)
from open-sourced ctests [189]. Inspired by cross validation [202], for each configuration

change in the dataset, we treated the other configuration changes from the same project as

its peer configuration changes (§3.3.2).

Test prioritization Because most of the studied RTP techniques are built based on the

traditional total and additional techniques, we implemented generic total and additional RTP

functions following the traditional definitions. We also implemented the QTF RTP technique

according to the traditional definition.

For IR-based techniques (§3.3.1), the choice of retrieval model and the approach to

construct data objects can substantially affect the performance [39, 40]. Our IR-based RTP

techniques used the BM25 retrieval model [81], as well as Hightoken and Lowtoken for data-

object construction, which have been demonstrated to achieve state-of-the-art performance

by Peng et al. [40]. Specifically, our IRhigh RTP technique used the Hightoken construction,

where a document only contains identifiers from a test file. Similarly, our IRlow RTP technique

used the Lowtoken construction, where a document contains identifiers, comments, and string

literals from a test file. We collected documents at test-case level utilizing Saha et al.’s

approach [39], treating each test method as a test case, as common in JUnit. We processed

documents following standard tokenization steps [40]. Unlike code changes, which can contain

a variety of elements, a configuration change only contains names and values of the changed

parameters. To construct query for each configuration change, we only use tokenized names

of the changed parameters, because actual configuration values are often too specific to be

found in the test code.

52

3.4.5 Experimental Procedure

To compare all the studied RTP techniques, we also implemented a randomized RTP

technique (denoted as Random) to serve as baseline, which shuffles ctests with a random

seed. For all studied RTP techniques with no break-tie strategy specified, ties are also

broken with random seeds. Thus, to amount for different results from randomization, we

ran each RTP technique on every configuration change 100 times, each time with a different

seed. Specifically, for each RTP technique, we did the following: (1) load the collected

configuration change dataset, i.e., ctest outcome, execution time, root-cause analysis results

under configuration changes, etc. (§3.4.3); (2) load the test information for the current

technique (§3.4.4); (3) select a configuration change D that has not been run under the

current technique; (4) initialize a random seed; (5) apply current technique to order the ctest

suite of D; (6) compute APMD and APMDc of the ctest suite order based on the collected

ctest outcome, execution time, and root causes; (7) repeat steps (4)–(6) 100 times; (8) repeat

steps (3)–(7) on all 66 configuration changes.

In total, we evaluated 84 RTP techniques for configuration testing: 16 basic non-peer-

based techniques, of which 15 are described in §3.3.1 and 1 is randomized baseline; 12 basic

peer-based techniques described in §3.3.2; 32 hybrid non-peer-based techniques, of which

16 each use CCdiv and CCtie models (§3.3.3); and 24 hybrid peer-based ones. In total, we

performed 554,400 (84*66*100) unique RTP executions.

3.5 EVALUATION

3.5.1 RQ1: Basic Non-peer-Based RTP

This RQ compares non-peer-based traditional and configuration-specific RTP techniques

on APMD and APMDc. In Figure 3.5, each violin plot and its embedded box plot show the

distribution of APMD or APMDc values per project per run for each RTP technique. Each

volin/box plot represents 500 (5*100) data points, for five projects and 100 random seeds.

The white bar in each box plot shows the median, while the dot shows the (arithmetic) mean

over all the data points for each RTP technique.

We further show the Tukey HSD test [127] results in Table 3.3. Tukey HSD is a post-hoc

test based on the studentized range distribution; it compares all possible pairs of means to

find out which specific groups’ means (compared with each other) are significantly different.

We performed this test on APMD and APMDc values to check for statistically significant

differences among the studied RTP techniques [40]. In the table, Column ”Average” shows

53

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Non-Peer-Based TCP Techniques

STD
tot

STtot

Covstot

Covmtot

PCtot

PCD
tot

Random

Covsadd

IRlow

IRhigh

PCD
add

PCadd

Covmadd

STD
add

QTF

STadd APMDc
APMD

Figure 3.5: Distribution of APMDc and APMD values for basic non-peer-based
RTP techniques (sorted by average APMDc).

54

Table 3.3: Average APMDc (A.c) and APMD (A.) values and Tukey HSD groups
of basic non-peer-based RTP techniques.

RTP
HCommon HDFS HBase ZooKeeper Alluxio Average Group
A.c A. A.c A. A.c A. A.c A. A.c A. A.c A. A.c A.

STadd .990 .998 .608 .652 .971 .974 .963 .964 .941 .995 .895 .917 A AB
QTF .998 .990 .865 .621 .997 .963 .909 .883 .679 .385 .890 .768 AB G
STD

add .998 .999 .604 .646 .908 .928 .934 .923 .939 .996 .877 .898 ABC BCD
Covmadd .990 .999 .587 .742 .871 .945 .993 .993 .935 .993 .875 .934 ABC A
PCadd .929 .992 .726 .739 .948 .948 .935 .928 .811 .807 .870 .883 ABC CDE
PCD

add .995 .996 .685 .681 .947 .947 .917 .928 .807 .813 .870 .873 ABC CDE
IRhigh .918 .895 .855 .887 .960 .980 .925 .925 .669 .803 .865 .898 ABC BCD
IRlow .934 .911 .876 .914 .904 .974 .909 .915 .672 .808 .859 .904 ABC ABC
Covsadd .991 .998 .520 .718 .853 .922 .993 .993 .923 .986 .856 .924 BC AB
Random .992 .993 .577 .578 .947 .946 .939 .938 .823 .820 .856 .855 BC E
PCD

tot .985 .993 .874 .868 .701 .685 .947 .961 .698 .837 .841 .869 C DE
PCtot .958 .979 .647 .567 .776 .762 .948 .947 .685 .799 .803 .811 D F
Covmtot .985 .992 .382 .660 .778 .793 .993 .993 .852 .906 .798 .869 D DE
Covstot .986 .992 .378 .658 .776 .793 .993 .993 .793 .892 .785 .865 D E
STtot .985 .985 .230 .308 .781 .779 .986 .991 .730 .866 .743 .786 E FG
STD

tot .978 .992 .268 .342 .780 .774 .940 .917 .675 .860 .728 .777 E G

the mean APMDc (”A.c”) and APMD (”A.”) values per technique (same as the dots in

Figure 3.5). Importantly, Column ”Group” presents the results of the Tukey HSD test. Tukey

HSD puts techniques into different groups if they have statistically significant differences.

Groups are named by capital letters, where ”A” denotes the best group, and the performance

degrades in alphabetical order. A technique having multiple letters has performance between

these letter groups. From the results, we make the following observations.

Total vs. Additional We can observe that additional techniques tend to outperform total

ones on APMD and APMDc. For example, stack-trace-based RTP has the highest average

APMDc value (0.895) among all studied techniques when using the additional strategy, but

it has one of the lowest average APMDc values (0.743) when using the total strategy. Similar

findings can be observed for code-coverage-based RTP on the APMD values, as well as

other studied techniques. The Tukey HSD test results also confirm our observation, e.g., for

APMDc, almost all additional techniques are in better Tukey HSD groups than Random,

while all total techniques are in worse groups. The key reason is that the additional strategy

considers the impact of already prioritized tests and tends to execute more diverse tests,

which can expose misconfigurations earlier. This finding is consistent with prior studies on

traditional regression testing, which showed that additional techniques generally perform

better than total techniques in RTP [35, 39, 137, 203]. In summary, we are the first to find

55

that the additional strategy is preferred over the total strategy even for configuration testing.

Comparing coverage criteria From Table 3.3, we can observe that traditional code

coverage at method granularity is still effective in Regression Test Prioritization for configura-

tion testing. For example, the additional code-coverage-based RTP techniques outperformed

others in APMD, in which Covmadd has the best performance. The reason is that a ctest with

higher code coverage is more likely to exercise its covered configuration parameters in more

project components, and thus has a higher chance to detect potential misconfiguration(s).

Moreover, configuration-specific coverage criteria can outperform traditional code coverage on

APMDc. For example, the additional stack-trace-based RTP (STadd) is in a statistically better

group than Covmadd in APMDc. The potential reason is that ctests with larger traditional

code coverage also tend to run slower; in contrast, configuration-specific coverage can also

effectively guide misconfiguration detection, but ctests with higher configuration-specific

coverage do not necessarily run slower.

Among the configuration-specific coverage criteria, the best stack-trace-based RTP tech-

nique (STadd) usually performs better than the best parameter-coverage-based RTP tech-

niques (PCadd) on APMD and APMDc. The reason is that different ctests reading the

same parameters may have greatly different invocation contexts and thus may have different

capabilities in detecting misconfigurations. Another interesting finding is that both the

best stack-trace-based and parameter-coverage-based techniques tend to outperform their

change-aware counterparts. For example, STadd achieves 0.895 (0.917) in APMDc (APMD),

while STD
add has 0.877 (0.898). The reason is that majority of configuration changes are

relatively small. Thus, the additional techniques cannot easily prioritize ctests with new

change-aware configuration-specific coverage, and behave as random baseline when no ctests

have new coverage.

IR-based RTP Although IR-based techniques have been recently claimed to be the state-

of-the-art in Regression Test Prioritization and unsafe selection for traditional regression

testing [39, 40], they never perform the best in configuration testing on APMD and APMDc.

There are several potential reasons. First, configuration changes are usually small and less

informative than code changes. Second, unlike code changes, configuration changes have no

surrounding context [40]. Thus, each change query is built simply from tokenized names of

changed parameters, which can often be too ambiguous. For example, the query built from

changed parameters {dataDir, dataLogDir} is a bag of words [data, dir, data, log, dir],

which can be common in test files. Another interesting finding is that IR-based techniques

never perform the worst in configuration testing. In fact, IR-based techniques are the most

56

stable ones: in Figure 3.5, the plots for IR-based techniques are more concentrated near the

median for both APMD and APMDc. The stability across runs for each project comes from

test documents being large and diverse, so few ties are produced. Also, IR-based techniques

prioritize ctests whose documents are more related to the names of changed parameters.

QTF-based RTP QTF has the second highest average APMDc, but the absolutely lowest

average APMD across all projects. The reason is that a considerable portion of ctests are

transformed from unit tests that have rather short execution time. Thus, QTF prioritizes these

faster ctests first and can end up running many more ctests than other RTP techniques before

detecting the misconfigurations, leading to low APMD values. However, when considering

the test cost for APMDc, QTF is much more cost-effective, because the ctests prioritized

earlier have short execution time. For example, on HDFS, many ctests prioritized earlier cost

less than 0.1 second.

APMD vs. APMDc While the rankings of many RTP techniques are similar by both

APMD and APMDc, the diametrically opposite ranking of QTF when using APMD and

APMDc indicates that APMD is not appropriate and can be misleading for configuration

testing. This finding is consistent with prior work on traditional regression testing: APFD

has been shown to be misleading in comparing RTP techniques because it does not consider

test execution time [61, 121]. Therefore, in the following sections, we only focus on the

APMDc results. Moreover, the high effectiveness of QTF in APMDc also inspired us to

combine the basic techniques with test execution time information for hybrid techniques

(§3.3.3).

Per-project results Table 3.3 presents the detailed average results for each studied project.

The main findings—such as additional is better than total, and QTF is competitive—from

the overall distribution of APMD/APMDc across all projects are also similar for individual

projects. In each project, QTF is also among the best, APMD can be misleading as it ranks

QTF as one of the worst techniques.

3.5.2 RQ2: Hybrid Non-peer-Based RTP

This RQ evaluates the effectiveness of hybrid non-peer-based RTP techniques with two

hybrid models discussed in §3.3.3. Figure 3.6 shows the distribution of APMDc values for

each hybrid non-peer-based technique: the names of corresponding basic non-peer-based

techniques are shown on the y-axis, while the green/orange violin plots show the distribution

57

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Hybrid Non-Peer-Based TCP Techniques

QTF

PCD
add

PCadd

Random

IRlow

IRhigh

Covstot

PCD
tot

STD
add

STadd

STtot

PCtot

Covmtot

STD
tot

Covsadd

Covmadd CCdiv
CCtie

Figure 3.6: Distribution of APMDc values for hybrid non-peer-based RTP tech-
niques (sorted by average APMDc from CCdiv).

58

Table 3.4: APMDc values and Tukey HSD groups of hybrid non-peer-based RTP.

RTP
HCommon HDFS HBase ZooKeeper Alluxio Average Group
CCdiv CCtie CCdiv CCtie CCdiv CCtie CCdiv CCtie CCdiv CCtie CCdiv CCtie CCdiv CCtie

Covmadd 1.00 .990 .886 .653 .989 .876 .946 .993 .983 .936 .961 .890 A BC
Covsadd 1.00 .991 .912 .532 .978 .853 .929 .993 .970 .923 .958 .858 A CD
STD

tot 1.00 .978 .931 .271 .996 .780 .910 .913 .785 .674 .924 .723 B G
Covmtot 1.00 .985 .928 .382 .925 .778 .909 .993 .836 .852 .920 .798 BC F
PCtot .998 .969 .901 .693 .995 .776 .911 .950 .791 .677 .919 .813 BC EF
STtot .998 .985 .901 .233 .997 .783 .911 .984 .766 .730 .915 .743 BCD G
STadd 1.00 .990 .635 .831 1.00 .975 .927 .902 .980 .942 .908 .928 BCDE A
STD

add 1.00 .998 .626 .846 .999 .918 .931 .907 .986 .940 .908 .922 BCDE AB
PCD

tot .999 .989 .869 .866 .997 .710 .916 .955 .757 .643 .907 .833 BCDE DE
Covstot 1.00 .986 .927 .378 .904 .776 .902 .993 .757 .794 .898 .785 CDEF F
IRhigh .999 .918 .928 .855 .995 .960 .908 .925 .633 .669 .893 .865 DEF CD
IRlow .999 .934 .924 .876 .996 .904 .908 .909 .638 .672 .893 .859 DEF CD
Random .999 .992 .839 .575 .996 .951 .911 .937 .683 .826 .886 .856 EFG CD
PCadd .992 .995 .690 .970 .953 .995 .930 .904 .815 .679 .876 .909 FG AB
PCD

add .996 .999 .628 .865 .948 .996 .942 .905 .812 .679 .865 .889 GH BC
QTF .992 .998 .573 .865 .945 .997 .940 .909 .800 .679 .850 .890 H BC

of APMDc values for Cost-cognizant-divide (CCdiv)/Cost-cognizant-break-tie (CCtie) hybrid

non-peer-based RTP techniques. Table 3.4 shows the APMDc values and Tukey HSD groups

for each RTP technique under the two hybrid models. Note that QTF+CCdiv serves as a

baseline for CCdiv hybrid techniques—it is effectively Random—while Random+CCtie serves

as a baseline for CCtie hybrid techniques—it is literally Random.

Hybrid vs. basic non-peer-based RTP Both hybrid models improved the average

APMDc values across projects on most of the basic non-peer-based techniques. For example,

excluding the baselines, the average APMDc values over all basic non-peer-based techniques

is 0.838 (Table 3.3), while the same values for CCtie and CCdiv hybrid techniques are 0.848

and 0.905, respectively. Also, the best basic non-peer-based technique (STadd) achieves

an APMDc value of 0.895, while the best hybrid non-peer-based technique, Covmadd+CCdiv,

achieves an APMDc of 0.961. Covmadd+CCdiv performs much better than Covmadd: Covmadd
favors ctests with larger code coverage but they also tend to run slower, while Covmadd+CCdiv

considers code coverage per time unit cost (§3.3.3), so Covmadd+CCdiv makes a better trade-off

between the coverage and cost information. In summary, this finding indicates that the hybrid

models can substantially boost the basic non-peer-based RTP techniques. This finding was

previously reported for traditional regression testing [40] but not for configuration testing.

Cost-cognizant-divide versus cost-cognizant-break-tie Table 3.4 shows that CCdiv

hybrid techniques overall perform better than CCtie hybrid techniques. The average APMDc

values range from 0.850 to 0.961 for CCdiv, while they range from 0.723 to 0.928 for CCtie.

59

Interestingly, the additional RTP techniques with configuration-specific coverage tend to

perform better with CCtie than with CCdiv, opposite to our overall finding. The reason is

that ctests usually do not read as many (changed) configuration parameters as they cover

traditional methods or statements; when using the additional strategy on configuration-

specific coverage, the basic priority scores of ctests quickly become 0 (already prioritized

ctests cover all parameters, and yet-to-prioritize ctests cannot cover any more parameters),

thus making CCdiv effectively become Random. For example, on HDFS, PCD
add cannot provide

additional coverage after prioritizing 2–4 ctests. In contrast, the CCtie hybrid model can

break such ties by ordering the tied tests in the ascending order of their execution time

(§3.3.3), thus outperforming CCdiv in such cases.

Total vs. Additional With the CCtie model, the additional hybrid techniques outperform

all the total ones on average APMDc values. This finding is consistent with our finding for

the basic non-peer-based techniques in §3.5.1. Interestingly, this no longer holds for the CCdiv

model. Although the very best CCdiv hybrid techniques (Covmadd+CCdiv and Covsadd+CCdiv)

are additional, all other additional techniques under-perform their total counterparts with

the CCdiv hybrid model.

The reason is that the priority of ctests can easily become 0 when using the additional

strategy, making CCdiv behave as Random (§3.5.2), while the total strategy can still effectively

prioritize different ctests. Thus, the CCdiv hybrid model is more effective for total RTP

techniques that seldom encounter 0 priority scores. Also, CCdiv can be more effective for basic

criteria that include more elements and are more diverse, such as traditional code coverage.

3.5.3 RQ3: Peer-Based RTP

This RQ evaluates the effectiveness of both basic (§3.3.2) and hybrid (§3.3.3) peer-based
RTP techniques for configuration testing. Figure 3.7 shows the distribution of APMDc values

for all the evaluated peer-based techniques. Table 3.5 further shows the average APMDc

values and the Tukey HSD groups for these techniques.

Peer-based vs. non-peer-based RTP According to Table 3.5, 7 of the 12 basic peer-based

techniques outperform the best non-peer-based technique (i.e., Covmadd+CCdiv) by average

APMDc. Moreover, as seen in Figure 3.7, all APMDc values for all peer-based techniques

are well above 0.65, while multiple basic and hybrid non-peer-based techniques have APMDc

values well below 0.65 even up to 0.2 (Figure 3.5 and Figure 3.6), indicating the effectiveness

and stability of the basic peer-based techniques for configuration testing.

60

0.65 0.70 0.80 0.90 1.00
Hybrid Peer-Based TCP Techniques

Confalltot

ConfDPtot

ConfPCtot

ConfRCtot

ParaPC
tot

ConfDPadd

Confalladd

ConfPCadd

ConfRCadd

ParaRC
tot

ParaRC
add

ParaPC
add

Basic
CCdiv
CCtie

Figure 3.7: Distribution of APMDc values for peer-based RTP techniques (sorted
by average APMDc from Basic).

61

Table 3.5: Average APMDc values and Tukey HSD groups of peer-based RTP.

RTP
Average Group

Basic CCdiv CCtie Basic CCdiv CCtie

ParaPC
add .985 .983 .991 A AB A

ParaRC
add .984 .985 .979 A A A

ParaRC
tot .976 .976 .977 AB B A

ConfRC
add .968 .967 .977 B C A

ConfPC
add .967 .966 .977 B C A

Confalladd .964 .960 .977 B C A
ConfDP

add .962 .960 .977 B C A
ParaPC

tot .926 .952 .926 C D B
ConfRC

tot .918 .968 .924 C C B
ConfPC

tot .899 .949 .902 D D C
Confalltot .899 .945 .899 D D C
ConfDP

tot .899 .945 .899 D D C

ParaPC
add and ParaRC

add are statistically significantly better than other basic peer-based

techniques, as they are both within the best Tukey HSD group ”A”. These two techniques

are not statistically different, although ParaPC
add has a slightly higher average APMDc. This

finding is surprising as ParaPC
add requires no root-cause information, but still performs as well

as ParaRC
add, which requires such information (§3.3.2). The reason is that on some projects

(e.g., ZooKeeper), many ctests have similar ParaRC , so the additional strategy suffers the

same problem as in §3.5.2. Meanwhile, ParaPC values of these ctests are more diverse (and

larger than their ParaRC values).

Different from the results for the non-peer-based techniques, the hybrid models have only

limited effectiveness for the peer-based techniques. The CCdiv model can only improve the

effectiveness for the inferior peer-based techniques. For example, Confalltot, the worst basic

technique, is improved from 0.899 into 0.945, while the two best basic techniques (ParaPC
add and

ParaRC
add) have almost no change. The CCtie model can only slightly improve the effectiveness

of the superior peer-based techniques. For example, ParaPC
add changes from 0.985 to 0.991,

while the inferior techniques (such as Confalltot) do not change at all. The reason is that total

techniques usually have fewer ties, making CCdiv more effective than CCtie.

Configuration vs. parameter granularity Using both additional and total strategies,

techniques at the parameter granularity have mostly outperformed techniques at the configu-

ration granularity. For example, as seen from Table 3.5, with the additional strategy, the

basic techniques at the parameter granularity (ParaPC , ParaRC) are both in group ”A”, while

62

Table 3.6: Results for the best RTP techniques.

RTP HCommon HDFS HBase ZooKeeper Alluxio Average Group

ParaPC
add+CCtie .999 .988 .999 .971 .998 .991 A

ParaPC
add .995 .982 .990 .975 .981 .985 A

Covmadd+CCdiv 1.00 .886 .989 .946 .983 .961 B
STadd .990 .608 .971 .963 .941 .895 C
QTF .998 .865 .997 .909 .679 .890 C
Random .992 .577 .947 .939 .823 .856 D

all basic techniques at the configuration granularity (Confall, ConfDP , ConfPC , ConfRC) are in

group ”B”. Similarly, with the total strategy, the basic ParaRCand ParaPC are in groups ”AB”

and ”C”, respectively, while all basic techniques at configuration granularity are within groups

”C” or ”D”. This result is expected as the parameter granularity captures parameter-level

information from other failed peer configuration changes, while the configuration granularity

is more coarse-grained (§3.3.2).

Total vs. Additional Similar to the results for the non-peer-based techniques, the ad-

ditional strategy generally performs better than the total strategy for the basic and CCtie

peer-based techniques. Except that Table 3.5 shows the basic ParaRC
tot is a total technique at

the parameter granularity that performed slightly better than basic additional techniques at

the configuration granularity, because ParaRC leverages more fine-grained information about

peer misconfigured parameters to guide more effective prioritization.

3.5.4 Summary

We compare the best techniques from each of the basic/hybrid peer-based/non-peer-based

categories, i.e., STadd (basic non-peer-based), Cov
m
add+CCdiv (hybrid non-peer-based), ParaPC

add

(basic peer-based), and ParaPC
add+CCtie (hybrid peer-based). We also include Random and

QTF as the baselines. Note that the QTF technique is rather competitive as it outperforms

almost all the basic non-peer-based RTP techniques (Table 3.3). Table 3.6 presents the main

comparison results. We can observe that all four techniques significantly outperform the

Random baseline, and three of them significantly outperform the QTF baseline. In summary:

(1) Covmadd+CCdiv is the best non-peer-based technique and recommended when no peer

configuration information is available, (2) ParaPC
add and its CCtie counterpart are the best

techniques (i.e., both in group ”A”) and recommended when peer information is available.

63

3.6 THREATS TO VALIDITY

External validity The threats to external validity mainly lie in projects and dataset

used in this work. To reduce such threats, we directly use all the real-world projects and

configuration changes from the Ctest dataset [189]. However, our evaluation is only based on

ctests, which cannot represent all possible types of configuration tests. Future work should

consider more diverse datasets and other types of configuration tests.

Internal validity The threats to internal validity mainly lie in the potential bugs in our

techniques and experimental scripts. To reduce such threats, the authors regularly check the

results and code to eliminate potential bugs. Furthermore, we released all our dataset and

code to benefit the community.

Construct validity The threats to construct validity mainly lie in the metrics used in

our study. To reduce such threats, we adapt two widely-used metrics for evaluating RTP

techniques (APFD and its cost-aware variant APFDc) and propose new metrics (APMD and

its cost-aware variant APMDc) for configuration testing.

3.7 RELATED WORK

We have already introduced the background on configuration testing (§3.2) and discussed

the related test-case prioritization (RTP) techniques (§3.3), so this section briefly discusses

the basics and applications of RTP. RTP techniques were initially proposed to reorder test

executions for traditional software systems (e.g., common C and Java applications) to speed

up detection of regression faults during software evolution. To date, a large number of code-

coverage-based RTP techniques have been proposed for such purpose, including techniques

based on traditional total/additional heuristics [47], adaptive random testing [137], genetic

algorithms [139], and constraint solving [138]. More recently, researchers have also looked

into RTP techniques that do not require code-coverage information, e.g., techniques based

on information retrieval [40] or static program analysis [204]. Interestingly, although more

and more RTP techniques have been proposed, the traditional additional technique and its

cost-cognizant variant (e.g., hybrid with Cost-cognizant-divide) have still remained among

the most effective RTP techniques [61].

Besides the traditional application scenarios, RTP has also been applied to various other

scenarios, e.g., mutation testing [140], fault localization [141], and automated program

repair [142, 143, 144]. Moreover, researchers have applied RTP techniques for testing

64

configurable systems [145, 146]. However, they still target the traditional regression testing

problem, i.e., detecting regression faults caused by code changes, while also considering

prioritizing the potential configurations that may likely expose regression faults. In contrast,

this work makes the first attempt to apply RTP for speeding up misconfiguration detection

for configuration testing.

3.8 DISCUSSION

To better measure the overall detection time for all the misconfigured parameters within

each configuration change, we introduced APMDc (together with APMD) as our main

evaluation metric. However, APMDc may not be preferred for practitioners with more

interest in how RTP affects the time to detect misconfigurations. Thus, we also relate

changes to APMDc with changes to the total test time. APMDc captures time to detect

all misconfigured parameters in a configuration change. If there is only one misconfigured

parameter, then 0.1 increase in APMDc maps to exactly 10% reduction of total time. If there

are more misconfigured parameters, 0.1 may map to less or more than 10% time reduction

to detect either the first misconfigured parameter or all misconfigured parameters. For our

studied projects, 0.1 increase in APMDc maps to from 7.86% (HCommon) to 21.93% (HBase)

average time reduction to detect all misconfigured parameters. The reduction can be even

larger to find the first misconfigured parameter, e.g., 0.1 increase in APMDc maps to 53.38%

(Alluxio) average time reduction.

Our study also points to several directions for future work. Since historical data were

reported to be useful in traditional Regression Test Prioritization [12, 17, 38, 40], we could

leverage historical configuration change test results from earlier code versions to develop

history-based RTP techniques for configuration testing. We also consider improving the

current configuration-specific RTP techniques and evaluating them on larger datasets. For

example, we can fuse deeper context information (e.g., how ctests use their parameters

acquired from configuration taint analysis) into stack-trace-based RTP techniques, or improve

peer-based RTP techniques by combining more data from peer configurations (e.g., test time,

failure stack traces).

Furthermore, we plan to understand the impact of software evolution on the performance

of our evaluated RTP techniques for configuration testing. Although prior work has shown

that the traditional prioritization techniques remain robust over multiple system releases [48],

this conclusion may not hold in the context of configuration testing. Configurations and

configuration-related code are updated frequently [154, 205], so certain types of test in-

formation may be more sensitive to software evolution. For example, data from old peer

65

configuration changes could be less accurate in guiding peer-based RTP techniques on recent

system releases.

We only evaluate the performance of RTP techniques on configuration changes. However,

sometimes software developers may change both configuration and code in the same commit.

In such context, an RTP technique should consider both configuration and code information,

and balance the effectiveness in speeding up both misconfiguration and code fault detection.

Future work should study how the mixture of configuration and code testing can shift the

performance of our evaluated RTP techniques, and understand how to develop competitive

RTP techniques in such context [206].

3.9 SUMMARY

We have performed the first extensive study of RTP for configuration testing. We have

implemented 84 traditional and novel ctest-specific RTP techniques. The experimental results

on five popular cloud projects demonstrate that RTP can substantially speed up misconfigura-

tion detection. We have also analyzed the impact of various controllable factors for applying

RTP in configuration testing, including coverage criteria, hybrid models, total/additional

strategies, peer-data granularities, and study metrics. In sum, our study reveals various

practical guidelines for applying RTP in configuration testing, including: (1) among the

basic RTP techniques, QTF is surprisingly competitive and often outperforms sophisticated

techniques (based on code coverage or IR) and even some ctest-specific techniques (based

on parameter coverage or stack traces), (2) hybrid RTP techniques (which enhance basic

techniques with text execution cost information) can boost the performance of most basic

techniques, and (3) peer-based RTP techniques (which leverage peer configuration data for

better prioritization) can substantially outperform all other studied RTP techniques.

66

Chapter 4: Regression Test Prioritization Tool for Python

This chapter presents an RTP tool for Python—pytest-ranking. Section 4.1 describes

the lack of readily-usable tool and realistic evaluation of RTP, and provides an overview of

this work. Sections 4.2 and 4.3 describe the implementation and usage of pytest-ranking.

Section 4.4 describes the experiment setup of our evaluation on pytest-ranking, including

the project and build collection, and how we rerun CI builds with pytest-ranking on

GitHub Actions. Section 4.5 reports the evaluation results, including analyses of regression

and flaky test failures (§4.5.1), variation of test-suite run durations, RTP effectiveness

measured by APFDc and HAPFDc, and pytest-ranking overhead (§4.5.2). Section 4.6

provides a concluding summary.

4.1 OVERVIEW

As prior chapters have also mentioned, many RTP techniques have been developed, e.g.,

using test costs [12, 61], past outcomes [14, 38], code coverage [35, 60], information retrieval [39,

43], and machine learning [41, 42]. These RTP techniques were shown effective on CI build

datasets of both open-source and proprietary software [17, 27, 28, 36, 37, 46, 47, 48, 62].

Although many RTP techniques and datasets exist, there is no readily usable, open-source

tool for running RTP in CI. Several research RTP tools have been developed, but mostly for

Java where widely used testing frameworks change slowly, e.g., the test ordering extension

for Surefire, the default test runner for the Maven build system, has been pending for 2.5

years [207]. Some prior studies have released scripts for RTP [36, 41, 42, 49, 65] but limited

to reproducing evaluation results on research datasets; they provide no interface to integrate

with common testing frameworks [135] or CI services. Lack of a readily usable tool makes

it difficult for practitioners to adopt RTP research results in their CI practices and for

researchers to evaluate their RTP innovations in widely used CI systems. Thusly motivated,

we develop an RTP tool for Python, because it is one of the most popular programming

languages, and Pytest, its most popular testing framework, is more open to accepting new

contributions than Maven Surefire.

Moreover, most prior work [27, 28, 46, 48, 49] has only evaluated RTP techniques by

simulating RTP orders on historical builds—they reorder tests from the original test-suite

runs (TSRs) of the build but compute RTP effectiveness on the reordered test suite with

test outcomes and durations copied from the original build, without actually executing the

reordered test suite. Such simulations can miss issues in test execution, e.g., tests in the

67

reordered test suite can have different outcomes or durations [135], reordering can violate

existing test-order dependency [108], and test parallelism can impact RTP effectiveness [45].

These are important issues, and their influence on RTP effectiveness should be evaluated.

This work makes the following contributions:

• We develop pytest-ranking, an RTP tool for Pytest, the most prominent testing

framework for Python. We release its source on GitHub [208], binary on PyPI [209] for

easy installation, linked from https://zenodo.org/records/15149581.

• We make pytest-ranking easy to use as a Pytest plugin compatible with several other

plugins for test selection, test parallelization, and test ordering. Moreover, pytest-

ranking is easily deployable, and we integrate it with 14 projects that use GitHub

Actions, currently the most popular CI system.

• We evaluate pytest-ranking by actually rerunning historical builds on GitHub

Actions, rather than just simulating the test outcomes and durations. Our test failures

analysis finds many flaky tests [110], which simulations would have missed. Out of

1,121 failed TSRs, we find 146 failed flaky tests: 112 flaky tests are order-dependent

(OD), with others being concurrency or non-deterministic (ND).

• pytest-ranking is effective, with a low overhead. Our analysis of RTP effectiveness

shows that pytest-ranking finds fault 37%–75% sooner than default Pytest order or

randomly ordering tests. The runtime overhead of pytest-ranking is 0.03% of the

corresponding TSR duration on average across projects; its storage consumption is 5%

of the corresponding TSR CI log on average across projects.

Experiments show that pytest-ranking integrates well with the Pytest ecosystem, has a

low runtime overhead (0.03% of the test-suite run duration), and finds test failures 37%–75%

faster than the Pytest default and Random orders. In addition, test failure analysis on

1,121 failed TSRs also finds 146 flaky tests, in which 112 are order-dependent (OD). Our

RTP effectiveness analysis also investigates on how test duration variation and flaky test

failure treatment impact the RTP technique effectiveness ranking on the executed TSRs.

Experiment results demonstrate the practicality and effectiveness of pytest-ranking, and

provide implications of adopting RTP in open-source software projects.

4.2 IMPLEMENTATION OF PYTEST-RANKING

We implement pytest-ranking as a plugin to the Pytest testing framework. Figure 4.1

illustrates how the components of pytest-ranking interact with the core Pytest. pytest-

68

https://zenodo.org/records/15149581

Collect Tests Ranker

Monitor

Pytest pytest-ranking

$ cd project_directory
$ pytest --rank

Pytest Cache

Print Summary Reporter

Extractor

Execute Tests

Figure 4.1: pytest-ranking interaction with Pytest core.

ranking has four main components: Ranker, Monitor, Extractor, and Reporter. When

pytest-ranking is enabled (1○), Pytest provides the selected test suite to the Ranker (2○)

and receives a prioritized test suite to run (3○). Monitor collects the relevant test data (test

duration and test outcome) as each test finishes (4○). Extractor processes the data when the

entire test suite finishes and saves the data of the TSR into the cache directory provided by

Pytest (5○); note that Ranker will use the cached data to prioritize tests in subsequent TSRs

(6○). At the end of the TSR, Pytest reports a summary, accompanied with a summary from

the Reporter (7○).

4.2.1 Tool Components

To develop pytest-ranking, we follow the best practices from the Pytest documentation

and popular plugins built by Pytest developers [210, 211]. Specifically, we define an entry point

for pytest-ranking [212], so when Pytest is run, it can automatically discover and load the

installed pytest-ranking [213]. Once pytest-ranking is loaded, it initializes a runner

object of the class RTPRunner that contains custom implementations of Pytest hooks, which

are Pytest APIs that a plugin can re-implement to change Pytest’s default behavior [214].

pytest-ranking then registers the runner to Pytest plugin manager [215, 216], so that

Pytest will execute RTPRunner’s implementations when running these hooks.

We next describe implementations of the main components of pytest-ranking.

Ranker Ranker re-implements a Pytest hook [217] that takes a list of test items from

Pytest [218] and reorders it. Ranker can apply various RTP techniques for reordering. In

Pytest, a test item, which we shorten to just test, is either a test function/method or a

69

parametrized unit test (PUT) with a concrete parameter value. Each test has a unique ID

based on its “collection address” [219], e.g.:

dir/test_module.py:: test_class :: test_function[value]

By default, Pytest orders the list hierarchically before passing it to Ranker: tests in the

same file follow the definition order, and files follow the directory tree traversal order. Ranker

sorts the tests based on their RTP score, as computed by various RTP techniques. Ranker

uses a stable sort, i.e., uses the initial order to break ties when multiple tests have the same

RTP score.

From the myriad of prior RTP techniques [28], we implement three in Ranker—QTF,

RecentFail , and SimChgPath—because recent research shows that simple RTP techniques

often work better than more complex techniques, including machine-learning based tech-

niques, especially when evaluated for realistic scenarios [36, 40, 49]. QTF prioritizes tests

with a shorter runtime from their last runs; RecentFail prioritizes the recently-failed tests.

SimChgPath prioritizes tests whose IDs are more textually similar to the paths of Python

files changed since the last TSR; its change-awareness complements other techniques [39, 40].

pytest-ranking tracks changed files between TSRs with file content checksums [220].

Ranker uses configurable weights to linearly combine values from all three RTP techniques

into a test’s overall RTP score, and then prioritizes tests by their scores. Linear combination

implements a hybrid RTP that is more effective than any individual RTP technique [40, 49]

and easier to scale with new techniques [67]. To combine different RTP techniques, Ranker

normalizes the values to the [0, 1] range for each technique [36, 37], ensuring that a higher

value means a higher priority. For tests with no prior RTP data, i.e., likely new tests, Ranker

assigns the highest priority.

Ranker allows the user to prioritize tests at different granularity, from individual tests

to test files, modules, or directories. Ranker is hierarchy-aware [108, 135], e.g., if a user

runs module-level RTP, Ranker identifies a test’s parent module m via its ID, computes the

average score from tests in m as the RTP score of m, and prioritize on modules; tests in each

module follow the Pytest initial order.

Monitor Monitor re-implements a hook [221] to collect test execution data. After each

test finishes, Pytest calls Monitor with a TestReport object [222] of this test as input. A

TestReport has attributes such as execution duration and outcome. To minimize runtime

overhead, Monitor only appends each TestReport to an in-memory list in RTPRunner; Extractor

processes these reports when the TSR finishes.

70

Extractor Extractor saves the RTP data of the executed tests from TestReports to the

Pytest cache [223]. The Pytest cache directory is in the target project’s root [224]; Extractor

creates a subdirectory to store mapping data for RTP techniques. For QTF, Extractor saves a

key-value mapping from a test to its duration from the current TSR. For RecentFail , it saves

a mapping from a test to how many times it has passed since its last failure, as computed

from the previous cache value and the current outcome. SimChgPath data (file checksums)

is handled by Ranker as change file set is only checked before a TSR. pytest-ranking

overwrites the previous cache with the new one, not saving data for historical TSRs to

minimize cache usage.

Reporter Reporter adds a session to the Pytest terminal summary to report the configura-

tion and overhead of pytest-ranking [225].

4.3 USAGE OF PYTEST-RANKING

pytest-ranking is a Python package and can be installed and managed via pip. pytest-

ranking is invoked by setting Pytest’s command-line options or configuration files [226].

For example, pytest --rank runs pytest-ranking with the default configuration. pytest-

ranking has these configurable options:

• --rank-weight sets RTP technique weights (§4.2). If all weights are 0, pytest-ranking
randomly shuffles tests, i.e., Random.

• --rank-level sets the granularity level on which RTP is run in the test suite hier-

archy [135]. Its value can be put (each PUT is treated as its own group), function,

module, and dir. Test units in the same group follow the default order, while groups

are reordered by the average RTP score.

• --rank-hist-len sets the largest value that can be recorded for each test for Recent-

Fail [65].

• --rank-seed sets the random seed for Random.

If a CI workflow runs different builds in a fixed location, e.g., a project directory on a

specific machine, users can deploy pytest-ranking into CI without any additional setup.

If the CI workflow always starts a new virtual machine to run a build, pytest-ranking

requires setting up the workflow to pass the Pytest cache data across builds. In our experience

with GitHub Actions, the setup adds only 14 lines of YAML to a CI workflow file [227].

71

pytest-ranking works with test selection [210] and parallelization [228]. It also works

with plugins for ordering tests [229, 230], by running ordered tests first in their declared order.

Some Pytest options [231], or plugins that randomly order tests [232, 233], can interfere with

pytest-ranking as they use the same reordering hook [214].

4.4 EXPERIMENTAL SETUP

To evaluate pytest-ranking, we collect and rerun builds from 14 projects that use Pytest

and GitHub Actions.

4.4.1 Dataset Collection

Project selection We start from the 2,500 most downloaded projects in the year 2023 on

PyPI [234, 235, 236] and select candidate projects through metadata filtering and manual

inspection as follows.

First, we filter out projects that did not list a valid GitHub URL, a required Python

version, or a required Pytest version in their PyPI metadata [236]—these steps yield 315

projects. Then, we filter out projects that did not run CI for their recent commits [237], and

projects whose git clone takes over 1 minute (these are likely too large for our compute

budget)—these steps yield 122 projects. To find popular projects with sufficient failures,

we keep projects with over 1,000 GitHub stars, and at least one failed TSR on the default

branch (§4.3) [233]—these steps yield 58 projects.

We manually inspect the top 40 most downloaded projects out of the 58 projects. We fork

each project repository, find its latest CI build with passing TSR, rerun that build on the

fork, and inspect the results. We include a project for evaluation if that CI build (1) ran tests

on GitHub Actions (which provides uniform API access to test logs and artifacts [238]), (2)

passed on ubuntu-latest and Python 3 [239], (3) has a TSR duration exceeding 45 seconds.

Based on manual inspection, we select 12 projects to evaluate.

We also want to select projects that randomly order tests [232, 233], as they likely have

no test-order dependency [108, 240] and could be open to RTP. However, from the 2,500

most-downloaded projects, we found only 1 eligible candidate after the selection steps as

above. To find more candidates, we eventually searched the top 50,000 most-downloaded

projects, found 91 projects that used related plugins, excluded 72 projects after filtering, and

selected 2 projects after inspection.

In total, we select 14 (12 + 2) projects to evaluate.

72

Build collection An RTP tool is presumably deployed to CI at a certain time and run on

all builds from that time. Thus, for each project, we collect all builds [241] from 2024-01-01

to 2024-12-01; we order the builds chronologically by their start time [36, 78, 123].

Some builds did not contain a TSR (e.g., builds from CI workflows for package release)—

they cannot be used to evaluate RTP. We remove non-TSR builds by checking if the build is

from a CI workflow file that runs tests: for each project, we manually find the CI workflow

file that runs tests in the latest commit, collect the set of paths this file has historically

taken via git log, and check if a build’s workflow file path matches any of the collected

paths. We only keep TSR builds that have a completed status, with a success or failure

build conclusion [241]—we removed incomplete TSR builds (e.g., cancelled, timed out, or

skipped builds), because they are often ignored in development and would trigger reruns.

We eventually collected 27,224 builds with TSRs, however, we did not evaluate them all to

limit computation time (§4.4.2).

4.4.2 Experiment Procedure

Different from prior work, we do not only simulate RTP order on the historical builds

(§4.1). Instead, we use pytest-ranking to actually execute the RTP-ordered test suite of

the historical build, on the code version that the build ran; then we study the test results.

To rerun historical builds on a project, we first fork the project and set up pytest-ranking

in its GitHub Actions CI test run file (§4.3). For each build, we get the repository content

archive at the commit of the build [242], overwrite the fork with the archive content except

for the modified CI file, and push the code to GitHub—GitHub Actions then automatically

builds the pushed code with the modified CI file, and we finally download the produced TSR

results. Rerunning historical builds can install later versions of the dependencies that are

incompatible with the historical code version, and introduce unwanted failures. We eliminate

such failure by adopting the package manager UV with its --exclude-newer option to each

project’s CI workflow, so that UV installs dependency versions released before the start date

of a given historical build [243].

To mimic how these projects would have run pytest-ranking, we (1) make minimal

change to their original CI file; (2) use the same GitHub Actions CI service; and (3) run

builds with one environment they used, e.g., ubuntu-latest and Python 3. We also mimic

build overlap: if build i+1 started after build i ended, we rerun i+1 after i finishes rerunning

(so i+1 uses the cache updated by i); otherwise, we run both builds in parallel as i+1 would

have used the cache prior to i.

For each build, we run 6 orders: 4 RTP orders (QTF, RecentFail , SimChgPath, and

73

Table 4.1: Evaluation dataset. TSR means test-suite run.

Project #Commit #TSR #Failed TSR
Average TSR size

#Test Duration (s)

aeon 49 294 121 32,295 2,202.2
ansible-lint 50 300 128 815 350.7
apscheduler 102 612 34 740 52.3
dask 51 306 65 12,613 802.1
dvc 49 294 86 2,693 306.1
ipython 42 252 171 1,422 91.2
librosa 32 192 30 13,752 450.9
molecule 50 300 54 458 182.3
networkx 50 300 84 6,073 125.7
pytest-django 51 306 56 219 59.1
pytest-xdist 34 204 105 208 105.4
pytorch-lightning 67 402 30 3,336 609.6
trimesh 49 294 78 599 325.4
ultralytics 42 252 79 73 524.7

Total or Average 718 4,308 1,121 5,378 442.0

Hybrid that combines the prior three with equal weights) and 2 baselines (Pytest Default

and Random). Each order runs as a separate CI workflow to avoid interference of Pytest

cache. We run orders at the function granularity (§4.3): test functions are prioritized, but

parameter values of the same PUT function follow the default order as they often have order

dependency [244], so reordering them can produce lots of non-regression failures.

Because we cannot rerun all 27,224 builds 6 times [89], we select all failed builds and the

first non-overlapping successful build before each failed build. The successful builds are used

to create the right data cache for running RTP on the failed builds. For each project, we

rerun its selected builds until reaching the last build or the first build that does not overlap

the 50th build; we then rerun more builds until reaching at least 30 failed TSRs per project.

We then collected the TSR results as JSON-formatted test reports [245].

We run each order once per build to (1) analyze test failures, and (2) compute effectiveness

for all orders except Random. To compute effectiveness for Random [246] on failed builds,

we rerun Random 10 additional times per build using rerun IDs as seeds.

74

Table 4.2: Number of failed tests and test failures. Reg. means regression.

Project
Failed tests Test failures
Flaky Reg. Flaky Reg.

aeon 9 341 21 3,307
ansible-lint 11 10 310 140
apscheduler 3 322 22 1,948
dask 9 118 32 943
dvc 9 5 76 42
ipython 83 2 2,257 42
librosa 0 10 0 90
molecule 0 7 0 66
networkx 6 123 103 750
pytest-django 2 21 25 138
pytest-xdist 1 12 3 150
pytorch-lightning 0 21 0 126
trimesh 0 26 0 204
ultralytics 13 17 240 357

Total 146 1,035 3,089 8,303

4.5 EVALUATION

Table 4.1 shows the statistics of our evaluation dataset. Following §4.4.2, we successfully

reran 718 commits/builds from 14 projects and obtained 4,308 TSRs (6 TSRs per commit).

Some selected commits failed to rerun, because the original commit introduces errors that

cause the TSR failed early, e.g., commits from a stale branch use deprecated dependencies

and cause all tests to error. As a result, some projects do not have 50 commits reran. Of

4,308 TSRs, 1,121 had at least one test failure. §4.5.1 presents our analysis of these failures.

§4.5.2 discusses the effectiveness and overhead of pytest-ranking.

4.5.1 Analysis of Test Failures

Analysis of flaky test failures Flaky tests can nondeterministically pass or fail on the

same code version [65, 107, 110, 236], therefore they do not always indicate regression bugs in

CI. While research often uses “sanitized” datasets that carefully remove flaky tests, e.g., [247],

runs on real CI do have flaky failures as also reported by some prior work [40, 49, 65].

Our inspection finds three types of flaky tests: OD (order-dependent) [248], Concurrency

(non-desirable worker interactions), and ND (non-deterministic outcome, e.g., depending on

random seeds [249]).

75

We semi-automatically examined all test failures to classify their nature. Tests that failed

under some orders but not others for the same commit were potentially flaky. We reran

each such test under the same order multiple times in an attempt to reproduce the failure.

If the failure was deterministically reproduced, it was likely OD, and we performed binary

search [250] on all tests earlier in the order to minimize the test sequence that revealed OD

flakiness; if binary search failed, we fell back to linear search. If the test was not OD, we reran

it 1,000 times to check if it was ND. All remaining flaky tests only failed with pytest-xdist,

so we executed each such test concurrently with another test to identify the Concurrency.

For tests that consistently failed on all orders for the same commit, we inspected the logs

to determine whether the failures are due to regression changes. Table 4.2 summarizes our

results: we confirmed 146 flaky tests and 1,035 regression tests. 10 projects contain at least

one flaky test, 6 projects contain at least one OD flaky test. Column “Failed Tests” shows the

count of distinct tests that are flaky or regressions (i.e., failed at least once due to regression

changes), and “Test Failures” shows the total number of test failures across all builds.

In Table 4.2, while flaky tests are much fewer than regression tests, the failed flaky tests on

average had failed twice more often than the failed regression tests. The reason is that flaky

tests tend to have a longer lifecycle, while regressions are often detected by deterministic test

outcomes and addressed quickly [65]. Of all the 1,035 regression tests, 774 failed for only one

commit. No regression test failed in more than 9 commits, while only 9 of the 146 flaky tests

have ever been fixed by the time of the most recent commit we examined.

Of the 146 flaky tests, 112 are OD. Like prior studies on OD Python flaky tests [236, 251],

we categorize them into Victims (i.e., fail if run after other “polluters” [250]) and Brittles

(i.e., pass only if run after other “state-setters” [250]). Of the 112 OD tests, 107 (95%) are

Victims, and only 5 (5%) are Brittles. The higher prevalence of Victims compared to Brittles

matches prior findings in both Python and Java projects [236, 250]. Of all 60 polluters we

confirmed for the Victim tests, 14 (23%) require a sequence of more than one test to be run

before the victim fails. This percentage is greater than a prior study on Java (2.4%) [250].

Of the 34 non-OD flaky tests, 6 are Concurrency and fail under pytest-xdist [228], a

plugin that enables pytest to spawn multiple worker processes to run tests. This parallel

execution can lead to failures when, e.g., concurrently running tests attempt to use the

same network port. The other 28 tests are ND, exhibiting flakiness due to the inherently

non-deterministic behavior of certain APIs, e.g., random number generators [249].

We also inspect new test failures from the additional Random reruns (§4.4.2). We treat

these reruns separately because we use them primarily to obtain more reliable results for the

average effectiveness of RTP techniques. The Random reruns further expose 34 flaky tests

from 6 projects. Of the 34 new flaky tests, and 27 are OD, 7 are ND. 3 of the 34 tests have

76

Table 4.3: Number of TSRs with regression/flaky test failures.

Project Reg. Reg. only Flaky Flaky only OD flaky OD flaky only

aeon 120 119 2 1 0 0
ansible-lint 24 16 112 104 112 104
apscheduler 30 30 4 4 0 0
dask 48 46 19 17 0 0
dvc 30 26 60 56 57 54
ipython 42 14 157 129 157 129
librosa 30 30 0 0 0 0
molecule 54 54 0 0 0 0
networkx 36 32 52 48 42 38
pytest-django 36 32 24 20 24 20
pytest-xdist 102 102 3 3 0 0
pytorch-lightning 30 30 0 0 0 0
trimesh 78 78 0 0 0 0
ultralytics 60 51 28 19 28 19

Total 720 660 461 401 420 364

been fixed in subsequent commits.

We find no OD flaky tests in projects that already run their tests in random order in CI,

i.e., aeon and pytorch-lightning, in reruns of all orders including Random. Our analysis of

test failures under RTP reordering suggests that flaky tests, especially OD flaky tests are not

uncommon in CI, and should be properly identified, annotated, or fixed. Running tests in

random order or RTP orders can effectively expose the OD flaky tests.

Test failure occurrence We first analyze the number of TSRs with regression or flaky

test failures. Table 4.3 shows the number of TSRs with regression, only regression, flaky,

only flaky, OD flaky, and only OD flaky test failures, respectively. Overall, majority of the

failed TSRs have only regression test failures. Out of 1,121 failed TSRs, 720 (64%) have at

least one regression test failure, and 660 (59%) have at least one regression test failure with

no flaky test failure. On the other hand, the number of TSRs with flaky failures is nontrivial:

461 (41%) of the failed TSRs have at least one flaky test failure, within which 91% have OD

flaky failures; 401 (36%) have only flaky failure.

Overall, 91% (660/ 720) TSRs that have regression failures have no flaky failures. For

TSRs that have only flaky failures, we find that 58% of them are from two projects, ipython

and ansible-lint; 47% them are from TSRs of Random order.

We now analyze the number of regression and flaky test failures in the TSRs. Table 4.4

shows the distribution of the number of regression test failures in TSRs that failed on

77

Table 4.4: Distribution of regression test failure count in TSRs with regressions,
represented in 25th (Q1), 50th (Q2), and 75th (Q3) percentile values.

Project Q1 Q2 Q3

aeon 4 7 25
ansible-lint 3 5 5
apscheduler 1 1 3
dask 3 16 37
dvc 1 1 2
ipython 1 1 1
librosa 2 2 2
molecule 1 1 1
networkx 2 5 8
pytest-django 2 3 4
pytest-xdist 1 1 1
pytorch-lightning 1 3 6
trimesh 1 1 2
ultralytics 1 1 15

Average 2 3 8

regressions. Comparing Table 4.4 to Table 4.1, we can see that the number of regression test

failures in majority of failed TSRs is small, relative to the average number of tests executed

per TSR. Meanwhile, Table 4.5 shows the distribution of the number of flaky test failures in

TSRs that failed on regression(s), as well as in all failed TSRs. We can see that majority

(75% as indicated by Q3) of the TSRs that failed on regression(s) have no flaky test failure,

except in projects ipython and ansible-lint. When considering all failed TSRs, the number of

flaky test failures slightly increases in some projects, however, majority of the failed TSRs in

7 and 3 projects have zero or one flaky test failures, respectively.

Implication Running RTP orders in CI can expose flaky test failures, especially those due

to test-order dependency, which could distract developers from immediately looking into the

regression test failures. However, the amount of OD flaky tests, can be manageable: 8 out of

14 the evaluated projects have no OD flaky test failures, and 75% of the failed TSRs in 10

projects have at most one flaky test failure. Since pytest-ranking can respect declared

test-order dependencies (§4.3), before adding pytest-ranking in CI, developers should

consider identifying dormant test-order dependencies via specific tools [251] or by running

random order [240]. To mitigate the impact of OD flakt tests to RTP in CI, developers can

further annotate [229, 230] or fix [250, 252] these order dependencies.

78

Table 4.5: Distribution of flaky test failure count in failed TSRs. Columns “TSRs
w/ Reg.” show the distribution in failed TSRs that have regressions; columns
“TSRs” show the distribution in all failed TSRs.

Project
TSRs w/ Reg. TSRs
Q1 Q2 Q3 Q1 Q2 Q3

aeon 0 0 0 0 0 0
ansible-lint 0 0 2 1 2 3
apscheduler 0 0 0 0 0 0
dask 0 0 0 0 0 1
dvc 0 0 0 0 1 1
ipython 0 5 19 7 15 20
librosa 0 0 0 0 0 0
molecule 0 0 0 0 0 0
networkx 0 0 0 0 1 3
pytest-django 0 0 0 0 0 1
pytest-xdist 0 0 0 0 0 0
pytorch-lightning 0 0 0 0 0 0
trimesh 0 0 0 0 0 0
ultralytics 0 0 0 0 0 2

Average 0 0 2 1 1 2

4.5.2 RTP Effectiveness

pytest-ranking effectiveness Among the two common RTP evaluation metrics APFDc

and APFD [14, 28, 120, 121], we use APFDc as it considers test runtime not just test count.

APFDc is normalized to [0, 1], so a 0.1 increase reduces the time to detect all faults by 10%

of the TSR time. We compute APFDc with one-to-one and many-to-one failure-to-fault

mappings [68]; they produce similar results, so we present only one-to-one.

Table 4.6 shows the mean APFDc across TSRs, considering only regressions from §4.5.1 as

faults to be detected. Table 4.6 lists the name prefix of each technique: all RTP techniques

(QTF, RecentFail , SimChgPath, Hybrid) outperform the baselines (Default , Random), being

37%–75% better than Default , and 29%–65% better than Random, on average across projects

(e.g., the improvement for Hybrid over Default is 0.827−0.473
0.473

≈ 75%) Hybrid that linearly

combines the other RTP techniques performs the best, with a mean APFDc value of 0.827,

75% better than Default (0.473) and 65% better than Random (0.500). Our results show

that running test suites reordered by pytest-ranking can detect regressions earlier than

running the default- or randomly-ordered test suites.

79

Table 4.6: Average APFDc on regression test failures.

Project Def. Ran. QTF Rec. Sim. Hyb.

aeon .477 .498 .725 .723 .475 .696
ansible-lint .866 .618 .836 .773 .866 .818
apscheduler .190 .447 .765 .239 .520 .751
dask .437 .525 .795 .481 .409 .668
dvc .536 .528 .697 .704 .532 .754
ipython .582 .437 .989 .868 1.00 1.00
librosa .255 .477 .767 .627 .455 .825
molecule .675 .480 .710 .760 .760 .880
networkx .614 .494 .971 .814 .932 .990
pytest-django .566 .517 .604 .590 .729 .683
pytest-xdist .433 .491 .550 .882 .467 .917
pytorch-lightning .440 .496 .907 .503 .785 .881
trimesh .291 .485 .857 .572 .538 .914
ultralytics .268 .500 .750 .528 .824 .801

Average .473 .500 .780 .647 .664 .827

Table 4.7: Average HAPFDc on regression test failures.

Project Def. Ran. QTF Rec. Sim. Hyb.

aeon .581 .520 .741 .786 .577 .717
ansible-lint .883 .641 .868 .811 .887 .853
apscheduler .262 .487 .770 .271 .549 .756
dask .494 .555 .804 .526 .469 .686
dvc .585 .588 .777 .738 .577 .829
ipython .608 .469 .990 .880 1.00 1.00
librosa .278 .498 .780 .647 .473 .828
molecule .700 .526 .729 .786 .779 .881
networkx .654 .535 .972 .832 .938 .990
pytest-django .585 .549 .629 .612 .748 .708
pytest-xdist .452 .511 .568 .884 .486 .920
pytorch-lightning .475 .522 .911 .543 .800 .888
trimesh .310 .496 .860 .586 .550 .916
ultralytics .297 .540 .751 .542 .830 .806

Average .512 .531 .796 .675 .690 .841

Impact of test duration variation on RTP effectiveness Both individual tests and

test suite can have different durations in different orders [135]. We next study how test

durations vary at both the individual test level and the TSR level under different orders for

80

Table 4.8: Average APFDc/HAPFDc under different flaky test failure treatments.

Treatment Def. Ran. QTF Rec. Sim. Hyb.

Average APFDc

“As regression” .473 .486 .782 .646 .630 .824
“Excluded” .473 .499 .780 .647 .664 .827
“As passing” .473 .500 .780 .647 .664 .827

Average HAPFDc

“As regression” .512 .519 .797 .673 .658 .839
“Excluded” .512 .532 .796 .675 .690 .841
“As passing” .512 .531 .796 .675 .690 .841

the same commit. We will also assess pytest-ranking’s effectiveness when accounting for

duration variation, and how the variation can impact effectiveness results.

For each individual test, we compute the magnitude of Relative Percentage Difference

(RPD) between the durations of its Default execution and non-Default executions of the same

commit. We observe that individual test duration can change substantially across executions

of different test suite orders for the same commit [135]—the RPD magnitude in 75% of the

tests is at most 4%–38% (average 18%) across projects, and the average RPD magnitude

across all tests in a commit is 6%–160% (average 45%) across projects. We also compute the

RPD magnitude between the durations of each commit’s Default TSR and its non-Default

TSRs. The TSR duration difference is 1%–10% (average 4%) across projects. We can see

that TSR duration has much less variation than individual test duration across executions of

different orders, because duration changes from different tests are canceling each other as

some tests run faster while other tests run slower from one order to another.

Given that test runtime changes under different orders, APFDc may not fairly compare dif-

ferent orders of the same test suite because a test suite will have different TSR durations [135].

Thus, we employ Hierarchy-aware APFDc (HAPFDc) to further assess pytest-ranking’s

effectiveness. Given the set of TSRs from different orders of the same test suite, HAPFDc

extends the shorter-running TSRs as if their durations were the same as that of the longest-

running TSR. HAPFDc preserves the other properties of APFDc. Table 4.7 shows the mean

HAPFDc values. We can still observe that all RTP techniques outperform the baselines,

being 32%–64% better than Default , and 27%–58% better than Random, on average across

projects. Hybrid still performs the best in HAPFDc as it does in APFDc. According to our

evaluation results, HAPFDc ranks all evaluated RTP techniques exactly the same as APFDc.

81

Impact of flaky test failure treatment on RTP effectiveness Prior RTP studies that

simulate RTP orders rely on using test outcomes and durations copied from the original

historical builds to compute RTP effectiveness metrics like APFDc on the reordered test

suites. Such setup assumes each test to always have the same outcome in different orders as

in the original build for the same commit. When computing APFDc, these studies either

treat all test failures from the original builds as regression test failures [28, 36, 37, 41], or

exclude flaky test failures after manually inspecting the original builds [40, 65]. The main

prior finding is that history-based RTP techniques, e.g., RecentFail , are ranked higher by

APFDc when flaky test failures are treated as regression test failures than when they are not.

Despite different orders having the same regression test failures, however, different orders

often have different flaky test failures when they are actually executed (§4.5.1). Now, we

want to know whether applying different flaky test failure treatments from prior studies on

our executed TSRs can influence our RTP effectiveness results and arrive at the same main

finding as prior work.

Table 4.8 shows the average APFDc and HAPFDc values across projects for each evaluated

order under different treatments. “As regression” means all flaky test failures are considered

as regression test failures when computing APFDc [36]. “Excluded” means all failed flaky

tests are omitted as if they were never executed (§2). “As passing” means all flaky test

failures are considered as passing tests—their durations are added to the TSR duration, but

their outcomes do not detect any fault (i.e., same as Table 4.6).

Table 4.8 shows that history-based RTP technique RecentFail have a higher APFDc value

than change-aware RTP technique SimChgPath when flaky tests are treated as regression test

failures (i.e., “As regression”) than when they are omitted from the APFDc calculation (i.e.,

“Excluded”). Meanwhile, the relative ranking of other RTP techniques and the baselines is

the same between treatment “As regression” and “Excluded”. This observation is the same

as prior finding obtained from simulated TSRs.

When comparing treatment “Excluded” and “As regression” in Table 4.8, both the APFDc

values and the ranking of RTP techniques are the same. In other words, including or excluding

flaky test durations for APFDc calculation do not significantly affect RTP effectiveness results,

because durations of failed flaky tests are trivial compared to the entire TSR. The same

observations above also hold for HAPFDc.

Comparison between simulating and executing reorder test suites On our collected

TSRs, we analyze the difference in RTP effectiveness between simulating reordered test

suites and executing reordered test suites. We use the test durations and outcomes from the

Default TSR when we compute the APFDc values for the non-Default TSRs on the same

82

Table 4.9: Average APFDc on regression test failures calculated by simulating
non-Default TSRs with test durations and outcomes of the Default TSRs.

Project Def. Ran. QTF Rec. Sim. Hyb.

aeon .477 .525 .774 .742 .475 .721
ansible-lint .866 .617 .843 .781 .866 .822
apscheduler .190 .472 .778 .239 .528 .764
dask .437 .533 .789 .478 .408 .655
dvc .536 .493 .658 .693 .534 .735
ipython .582 .454 .991 .868 1.00 1.00
librosa .255 .541 .820 .637 .470 .865
molecule .675 .501 .709 .759 .763 .881
networkx .614 .492 .975 .812 .932 .990
pytest-django .566 .519 .599 .589 .735 .683
pytest-xdist .433 .491 .551 .882 .466 .917
pytorch-lightning .440 .499 .912 .503 .779 .879
trimesh .291 .485 .859 .572 .539 .914
ultralytics .268 .521 .754 .530 .829 .803

Average 0.473 0.510 0.787 0.649 0.666 0.831

commit. Table 4.9 shows the average APFDc values calculated through simulation. Overall,

we observe that average APFDc values do change in different projects and for different RTP

techniques. The overall effectiveness ranking of all the evaluated RTP techniques is the same

as executing reordered test suite data (shown in Table 4.6).

pytest-ranking overhead At last, we evaluate the overhead of pytest-ranking on its

runtime and Pytest cache usage, as presented in Table 4.10. We collect pytest-ranking’s

runtime from Reporter’s terminal summary (§4.2), which includes the time for computing

RTP data and reordering. The time is 0.1 sec, or 0.03% of the TSR duration on average

across projects. We collect the Pytest cache sizes after the RTP-ordered TSRs finish, and

compare the uncompressed sizes between the TSR cache and the CI log. The cache size is 6

to 538 KB, or 1%–9% (average 5%) of the corresponding CI log sizes.

Implication To practitioners, our results motivate the adoption of pytest-ranking in CI

for effective and efficient default detection. Specifically, the increase in APFDc and HAPFDc

are larger than the change in TSR duration from Default to RTP orders, indicating that

Pytest test suites can benefit from RTP for faster fault detection. The small runtime overhead

and cache size also show that pytest-ranking can be deployed efficiently.

To researchers, our results show that order simulations produce a similar overall RTP

83

Table 4.10: Average pytest-ranking time and cache overhead.

Project Time (s) % TSR time Cache (KB) % CI log size

aeon 0.215 0.01% 538 1.79%
ansible-lint 0.015 0.00% 71 9.07%
apscheduler 0.016 0.03% 15 2.61%
dask 0.071 0.01% 216 1.33%
dvc 0.022 0.01% 81 3.71%
ipython 0.076 0.08% 37 3.72%
librosa 0.421 0.09% 138 3.10%
molecule 0.072 0.04% 35 7.53%
networkx 0.176 0.14% 155 8.99%
pytest-django 0.008 0.01% 7 4.56%
pytest-xdist 0.007 0.01% 7 3.99%
pytorch-lightning 0.197 0.03% 107 4.73%
trimesh 0.023 0.01% 22 6.94%
ultralytics 0.016 0.00% 6 5.26%

Average 0.095 0.03% 103 4.81%

effectiveness ranking as rerunning the reordered test suites. Specifically, copying test durations

could be viable because the actual TSR duration varies much less than each individual test

across different orders. Actual APFDc and HAPFDc values may differ between simulations

and reruns, but the overall RTP technique ranking remains unchanged. On the other hand,

copying test outcomes, especially flaky test failures, likely affects the ranking of history-based

RTP techniques, but may not affect the other techniques. Overall, simulations can still be

considered for RTP evaluation if reruns become costly. Future work is needed to establish if

simulations and reruns lead to the same conclusions for more RTP techniques, projects, and

CI settings.

4.6 SUMMARY

We presented our pytest-ranking tool for RTP of Pytest test suites. The evaluation on

4,308 GitHub Actions builds of 14 Python projects shows that our tool integrates well with

the Pytest ecosystem, has a low runtime overhead, and finds test failures faster than the

baseline orders. Our evaluation also provides implication on flaky tests when running test

suites in different orders. We hope that these promising results will enable more research

and eventually lead to more adoption of RTP in practice.

84

Chapter 5: Conclusions and Future Work

This chapter presents the conclusions and future work of this dissertation. Section 5.1

provides summaries and conclusions of the main work. Section 5.2 lists future work that

could be built from this dissertation. Section 5.3 closes this dissertation with a remark.

5.1 CONCLUSIONS

RTP has been researched for nearly three decades, prior studies have shown promising

results of RTP in speeding up regression fault detection with the hope of reducing debugging

feedback time to developers. However, much less research outcomes of RTP have been put

into practice. To facilitate adoption of RTP in modern software systems, this dissertation

studies the effectiveness of prior RTP techniques, and proposes novel RTP techniques, in the

latest and most practical testing scenarios. This dissertation also presents an effective and

lightweight tool for developers to apply RTP conveniently in the Python ecosystem.

Regression Test Prioritization on Long-Running Test Suites First, this dissertation

presents the RTP dataset of long-running test suites that reflects up-to-date CI practices—

LRTS , and revisits key findings from prior RTP studies on LRTS . Prior RTP datasets mostly

fall into at least one of these limitations: curated from severely outdated CI builds (e.g., from

over 10 years ago), having short-running test suites that last for a few minutes on average,

collected from inaccessible proprietary projects, curated from synthetic failed builds with

seeded faults. It was uncertain whether RTP effectiveness results from these datasets remain

true in long-running test suites with modern CI practices.

LRTS is large-scale, curated from popular open-source projects with rich CI history and

real CI failures. More importantly, LRTS assesses RTP techniques on long-running test

suites (test-suite run duration is 6.5 hours on average) where RTP can be the most beneficial.

We present a detailed analysis of LRTS , including analyses of its CI builds and test failures,

and its comparison with prior RTP datasets with short-running test suites.

On LRTS , we evaluated 59 RTP techniques from five leading technique categories. All

of these techniques are lightweight and can be easily applied in practice as they only use

readily-accessible CI features. We revisit the key prior findings of RTP on long-running test

suites, and present new findings on the impact of realistic CI issues on RTP effectiveness,

e.g., confounding test failures and tests having no prior failure history. RTP techniques

are likely to face these issues when being deployed into CI pipeline. We find that simply

85

prioritizing faster tests that have failed recently, outperforming all sophisticated techniques.

Among standalone RTP heuristics, running faster tests first is the most effective and the

least impacted by confounding test failures.

Conclusion: RTP is effective in speeding up fault detection on long-running test suites,

even under the impact of realistic CI issues such as failures from flaky tests. The simplest

techniques, such as running historically faster tests first, are (1) lightweight to implement

and maintain, and (2) deliver stronger and more robust performance than the more sophisti-

cated machine learning or information-retrieval-based techniques. This dissertation shows

encouraging results in applying RTP on modern software projects with long-running test

suites and up-to-date CI practices.

Regression Test Prioritization for Configuration Testing Second, this dissertation

applies RTP in an emerging yet critical testing context—configuration testing. Running a

configuration test suite against configuration change can be time-consuming, while config-

uration testing is run frequently given the high configuration change velocity in modern,

highly-configurable systems.

We apply traditional RTP techniques that are based on code coverage, test duration, and

information retrieval. We also develop novel, configuration-specific RTP techniques that are

based on configuration parameter coverage, configuration API traces, and peer configuration

change data. We further analyze the impact of various controllable factors for applying RTP

in configuration testing, including coverage criteria, hybrid models, total/additional RTP

strategies, peer-data granularities, and effectiveness metrics.

Our evaluation demonstrates that RTP can substantially speed up misconfiguration de-

tection, with the following major results. Among the applied traditional RTP techniques,

simply running faster configuration tests first can outperform the sophisticated techniques

and even some configuration-specific techniques by up to 22%. Applying test execution time

data into other standalone RTP techniques can further boost their effectiveness by up to

27%. Our novel RTP techniques that leverage peer configuration change data substantially

outperform others.

Conclusion: RTP is effective in speeding up misconfiguration detection in configuration

testing, a testing scenario in modern highly-configurable systems. In practice, developers

could apply the simplest RTP technique of running faster tests first for configuration test

prioritization, which delivers rival performance compared to techniques based on code

coverage. To take a step further, developers can also apply standalone configuration-specific

techniques or combine test duration time with configuration-specific techniques, which can

be substantially more effective. This dissertation shows that it is also promising to apply

86

RTP in emerging contexts outside traditional regression testing.

Regression Test Prioritization Tool for Python Third, this dissertation presents

the first readily-usable, open-source RTP tool for Python and Pytest—pytest-ranking.

pytest-ranking is well integrated with the Python ecosystem and its most popular testing

framework Pytest. It is managed as a Python package and can be deployed to local CI

workflow off-the-shelf, or with a minimum change to CI configuration files if using a remote

CI service such as GitHub Actions.

pytest-ranking provides convenient and practical features for developers, allowing

developers to find the suitable pytest-ranking configuration for their projects. For

example, in pytest-ranking, developers can flexibly combine different lightweight RTP

techniques that have been shown as some of the most effective ones in testing scenarios

evaluated in this dissertation and some prior studies. Developers can also configure pytest-

ranking to run RTP at different test hierarchy levels, e.g., test input, test method, or test

file level. pytest-ranking is compatible with popular Pytest tools for test selection, test

parallelization, and test-order dependency, as well as Python test management tool Tox.

Different from most of the prior RTP studies, we realistically evaluate pytest-ranking

by actually running CI builds with different RTP orders produced by pytest-ranking, and

comparing them to Pytest’s default order. Our evaluation shows that RTP orders produced

by pytest-ranking enable a 37%–75% speed-up on regression fault detection, compared to

Pytest’s default order or randomly ordering tests. pytest-ranking’s runtime overhead is

0.03% of the corresponding test-suite run’s runtime, and its consumed storage overhead is

5% of the corresponding test-suite run’s CI log size. Overall, pytest-ranking is effective

and efficient. pytest-ranking also exposes flaky tests in the evaluated projects, a majority

of which are order-dependent flaky tests, and only a handful have been fixed by developers.

Our analysis on the impact of test duration variation shows that TSR duration varies much

less than individual test duration under different orders in the same commit. As a result,

although the APFDc values of an RTP technique are different from its HAPFDc counterparts,

both APFDc and HAPFDc produce the same RTP technique effectiveness ranking.

We study the impact of flaky test failure treatment on the executed reordered test suites.

We have the same observation as prior studies on simulated reordered test suites [40, 65]:

the history-based RTP technique is ranked higher than the change-aware technique when

flaky test failures are considered as fault-detecting failures in RTP effectiveness computation,

e.g., APFDc and HAPFDc. The relative ranking of other evaluated techniques is unchanged.

At last, we simulate our reordered test suites with test outcomes and durations from the

test-suite runs that were ran in default order. We compare the APFDc values from the

87

simulations with the APFDc values from the actual reruns. The comparison shows that the

ranking of RTP techniques obtained from simulations is the same as reruns.

Conclusion: pytest-ranking can speed up regression fault detection in practice, and

is accompanied by high usability, low runtime overhead, and minimum deployment effort.

However, developers should actively resolve failures from order-dependent flaky tests before

deploying RTP in practice. On the other hand, researchers can still simulate orders in

RTP evaluation if executing the reordered test suites is too costly, because the overall RTP

effectiveness ranking should be similar in both experiment setups.

5.2 FUTURE WORK

This section discusses some possible future work that this dissertation has opened.

5.2.1 Further Development of RTP Tool

Hierarchy-aware RTP order with interleavings When pytest-ranking runs Hierarchy-

Aware (HA) RTP at certain group level [135], test groups are reordered by their priority

scores, while tests within each group are executed consecutively in default order so that

within-group order dependencies are not broken. This implementation misses the opportunity

of interleaving tests from different groups to further speed up fault detection.

We can implement and study RTP algorithms that interleave tests from different groups,

and respect the relative within-group test orders. For example, consider a test suite with test

groups A,B, where each group has two tests: [A1, A2, B1, B2]. Currently, HA RTP in pytest-

ranking can only run two orders at the group level: [A1, A2, B1, B2], and [B1, B2, A1, A2].

However, it is possible that the following orders can find fault faster: [A1, B1, A2, B2], and

[B1, A1, B2, A2]—these orders interleave tests across groups, but still respect the relative order

within each group. While implementing such an RTP algorithm, further studies are needed

to understand the overhead from interleaving tests across groups in Python/Pytest [253].

Running RTP with test parallelism pytest-ranking can be run together with test

parallelism in Pytest [228]. Test Parallelism (TP) improves regression testing efficiency, while

also adding extra complexity in CI. For example, tests can be first ordered by RTP, then

workers are assigned tests from the RTP-ordered list in a certain fashion (e.g., round-robin).

On the other hand, tests can also be first assigned to workers, after which RTP re-orders

tests in each worker separately. TP has its own performance-affecting factors and constraints,

88

e.g., load balancing strategies, and test group granularity at which TP is run. The trade-offs

and optimization opportunities when combining RTP and TP are unclear.

Using pytest-ranking, we can further (1) explore the opportunities and constraints when

deploying both RTP and TP in CI, (2) assess cost-effectiveness of existing prioritized-then-

parallelized RTP algorithms and metrics in practice [45], (3) study parallelized-then-prioritized

RTP, and (4) develop robust and efficient parallel RTP.

Handling non-regression test failures (e.g., flaky test failures) RTP is supposed to

report test failures to developers as soon as they occur. If the prioritized failing tests are

irrelevant to regressions, developers can be distracted and annoyed by the early-reported

failures. Flaky tests have been a major source of these irrelevant test failures.

To encourage more adoption of RTP, we should help alleviate the burden of flaky tests

from developers. For example, we can integrate tools/techniques that identify flaky tests

into pytest-ranking, so that pytest-ranking can isolate failures from these tests.

As a starting point, pytest-ranking can regularly execute sanitization test-suite runs to

record possible flaky tests using flaky test detection tools [248, 254, 255], and report their

failures in an isolated summary section during subsequent RTP test-suite runs. pytest-

ranking may also de-prioritize the detected flaky tests during RTP ordering.

As more techniques for detecting and fixing flaky tests are being developed, future work

on RTP should consider how to properly utilize them.

Incorporating other RTP results pytest-ranking implements simplest and among

the most effective techniques from recent RTP studies [36, 37, 49]. For future work, pytest-

ranking can be used as a testbed to experiment with other existing or newly-developed RTP

algorithms and strategies. As a starting point, it could be helpful to (1) experiment with

the use of learning algorithms to find optimal RTP technique combination in replacement of

the linear-weighted combination baseline in pytest-ranking [43], and (2) experiment with

other possible, lightweight RTP techniques that use readily-usable CI features [36].

5.2.2 RTP for Configuration Testing

Prioritization for configuration fuzzing drivers Configuration tests can be selected as

fuzzing drivers to find configuration faults in software systems [256]. A selected configuration

test will be executed many times, each time with a different test input generated by the

fuzzer, hoping that the test will fail on the test input and expose fault(s).

89

We can study whether RTP can prioritize configuration tests that are likely to expose

faults, which will be first provided as candidates to the fuzzer to improve its fault detection

efficiency. Such RTP algorithms can leverage heuristics extracted from the to-be-fuzzed

software version or from prior configuration test-suite run results. For example, one possible

heuristic can be the number of covered configuration parameters divided by the runtime of a

test, i.e., the number of covered parameters per unit time.

More RTP techniques and studies on configuration testing Simple RTP algorithms

that use historical test outcomes have shown promising results in some RTP studies, e.g.,

running frequently failing tests first. However, their actual fault detection cost-effectiveness

is often plagued by misleading test failures from flaky tests [65]. However, the impact of test

flakiness on configuration testing is unclear. We can (1) study the impact of test flakiness on

configuration testing, and (2) assess the promise of RTP algorithms based on configuration

change history, under configuration test flakiness.

Prior work has developed a configuration testing tool in Java [53]. Future work can develop

an RTP tool for configuration testing.

5.2.3 Other Future Work on RTP

Benchmarks, metrics, and user studies With pytest-ranking, we could build

executable and reproducible RTP benchmarks on Python. The benchmark could provide a

sandbox for convenient RTP evaluation. The benchmark could additionally incorporate test

selection and parallelization, so that it can support regression testing studies on scenarios

where multiple testing techniques are applied.

A number of metrics have been proposed for RTP evaluation, as surveyed [28]. Some

metrics distinctly differ from the other, while some are variants with slight modifications.

However, most of them have only been used on simulated test-suite runs to compute RTP

effectiveness. Future work can study the differences and practical implications of these metrics

on RTP-ordered test-suite runs obtained from the actual execution of pytest-ranking.

Although RTP aims to reduce developement feedback time, such reduction may not be

beneficial to all development settings. Developers like to be informed of the first test failure

at the earliest convenience in some cases (e.g., perhaps where cost increases with a longer wait

time), while waiting until the entire test-suite run finishes in some other cases. Future work

can (1) identify testing scenarios that demand timely validation and debugging of software

change, e.g., [257], where RTP could be more beneficial; (2) conduct study of open-source or

industry developers to understand what part of their development could benefit from RTP.

90

RTP and test selection RTP has been applied to test selection [23, 36, 42], i.e., tests

are selected if their RTP scores are above a certain cutoff. These test selection approaches

are lightweight, but unsafe and incomplete. Some studies have thus provided insights

into measuring the safety of RTP-based test selection. They provide limited analyses on

safety-cutoff-tradeoff [36], or focus RTP features that were not the most effective in this

work [23]. Future work can study both the safety and completeness of test selection on more

RTP heuristics, to investigate their tradeoffs between cost-saving and safety/completeness.

Moreover, because it is common that most tests may not fail even after typical test selection,

future work can also study the safety and completeness of further applying RTP-based

selection on top of the selected tests.

Improving RTP evaluation with Large Language Models One important component

of RTP evaluation is failure-to-fault mapping, which links each test failure to the fault that

causes the failure. However, failure-to-fault mapping is hard to obtain on real CI builds,

because identifying the fault of each failure requires manual inspection. Thus, evaluation of

an RTP technique on real CI datasets often makes simpler assumptions on the mapping, e.g.,

each test failure maps to the same fault.

Moreover, APFDc uses failure-to-fault mapping as input, and considers the cost of each

fault. The cost should capture different aspects of the fault, such as the failed test duration

and the severity of the fault. However, fault severity also requires significantly manual

inspection effort to obtain. Without such information, RTP studies can only use test runtime

as the cost, which implicitly assigns all faults with the same level of severity.

Recently, Large Language Models (LLMs) have been applied for fault detection and

analysis [258, 259], demonstrating their capability in reasoning about software failures.

Future work can thus consider applying LLMs for analyzing what fault caused which test

failure, to approximate failure-to-fault mapping and fault severity efficiently.

5.3 CLOSING REMARK

Regression testing is an important step in maintaining software reliability in software

development. This dissertation presents studies and a tool for applying Regression Test

Prioritization to effectively speed up fault detection in regression testing for modern software

systems. We hope our work can facilitate more future research and practices of Regression

Test Prioritization, providing benefits to software development and testing in general.

91

Appendix A: Other Work

This appendix chapter lists the other research work conducted by the dissertation author,

in parallel to the work that was presented in the main chapters of the dissertation.

Bug reproduction test We develop an effective LLM-agentic approach to generate Bug

Reproduction Tests (BRTs) from bug reports in an industrial development context. The

generated BRTs can be leveraged to effectively improve downstream Automated Program

Repair (APR) performance, as well as to select promising fixes generated by APR systems [57].

Configuration testing and validation We develop Ctest, a testing framework to effec-

tively detect misconfigurations and configuration-related faults [52]. Ctest automatically

identifies and transforms existing tests into configuration tests, i.e., ctests, to test the changed

configuration values with the exercised code. However, Ctest is limited by its slow runtime

and reliance on test abundance in the target project. We further develop Ciri, a fast configu-

ration validation framework that leverages the reasoning capability of LLM to flag potentially

erroneous values in configuration change [58]; Ciri complements Ctest.

Efficient deep learning systems To improve GPU memory efficiency of multi-terabyte-

size Deep Learning Recommendation Models (DLRMs), we holistically characterize GPU

memory consumption of DLRM distributed training workloads. Based on our findings, we

develop an analytical and model-agonistic GPU memory provisioning system, proactively

reducing Out-of-Memory (OOM) events and memory under-utilization due to mis-provisioning

in DLRM production training [56]. High GPU memory consumption of key-value (KV) cache

generated during LLM inference has also emerged as a challenge in LLM serving. We explore

the opportunity of using Compute Express Link (CXL) as KV cache storage to improve

prefill request serving throughput while adhering to given latency SLO [59].

Efficient machine learning algorithms We study the problem of modality selection—

selecting the best size-k subset of modalities from v available ones (k ≪ v) for multimodal

learning under resource constraints (e.g., limited memory and GPUs). To tackle this problem,

we identify key assumptions of multimodal data, based on which we derive modality selection

and ranking algorithms that admit efficient approximate solutions [54, 55].

92

References

[1] J. Gumbrecht, “More Than 200 People with Diabetes Injured After Software Is-
sue Drained Insulin Pump Batteries,” https://www.cnn.com/2024/05/08/health/
tandem-insulin-pump-app-recall, 2024.

[2] S. Blanco, “Report: Tesla Autopilot Involved in 736 Crashes since 2019,” https://www.
caranddriver.com/news/a44185487/report-tesla-autopilot-crashes-since-2019, 2023.

[3] B. George, “Why Boeing’s Problems with the 737 MAX Began More
Than 25 Years Ago,” https://www.library.hbs.edu/working-knowledge/
why-boeings-problems-with-737-max-began-more-than-25-years-ago, 2024.

[4] L. H. Newman, M. Burgess, and A. Greenberg, “How One Bad Crowd-
Strike Update Crashed the World’s Computers,” https://www.wired.com/story/
crowdstrike-outage-update-windows, 2024.

[5] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig, “Usage, Costs, and Benefits
of Continuous Integration in Open-Source Projects,” in ASE, 2016.

[6] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and D. Dig, “Trade-Offs in Continuous
Integration: Assurance, Security, and Flexibility,” in FSE, 2017.

[7] A. Miller, “A Hundred Days of Continuous Integration,” in Agile, 2008.

[8] M. Meyer, “Continuous Integration and Its Tools,” IEEE Software, vol. 31, 2014.

[9] T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm, “Continuous
Deployment at Facebook and OANDA,” in ICSE Companion, 2016.

[10] C. Parnin, E. Helms, C. Atlee, H. Boughton, M. Ghattas, A. Glover, J. Holman,
J. Micco, B. Murphy, T. Savor, M. Stumm, S. Whitaker, and L. Williams, “The Top
10 Adages in Continuous Deployment,” IEEE Software, vol. 34, 2017.

[11] C. Rossi, E. Shibley, S. Su, K. Beck, T. Savor, and M. Stumm, “Continuous Deployment
of Mobile Software at Facebook,” in FSE, 2016.

[12] D. Saff and M. D. Ernst, “Reducing Wasted Development Time via Continuous Testing,”
in ISSRE, 2003.

[13] D. Saff and M. D. Ernst, “An Experimental Evaluation of Continuous Testing During
Development,” Software Engineering Notes, vol. 29, 2004.

[14] S. Yoo and M. Harman, “Regression Testing Minimisation, Selection and Prioritisation:
A Survey,” STVR, vol. 22, 2012.

93

https://www.cnn.com/2024/05/08/health/tandem-insulin-pump-app-recall
https://www.cnn.com/2024/05/08/health/tandem-insulin-pump-app-recall
https://www.caranddriver.com/news/a44185487/report-tesla-autopilot-crashes-since-2019
https://www.caranddriver.com/news/a44185487/report-tesla-autopilot-crashes-since-2019
https://www.library.hbs.edu/working-knowledge/why-boeings-problems-with-737-max-began-more-than-25-years-ago
https://www.library.hbs.edu/working-knowledge/why-boeings-problems-with-737-max-began-more-than-25-years-ago
https://www.wired.com/story/crowdstrike-outage-update-windows
https://www.wired.com/story/crowdstrike-outage-update-windows

[15] M. Gligoric, L. Eloussi, and D. Marinov, “Practical Regression Test Selection with
Dynamic File Dependencies,” in ISSTA, 2015.

[16] A. Shi, P. Zhao, and D. Marinov, “Understanding and Improving Regression Test
Selection in Continuous Integration,” in ISSRE, 2019.

[17] S. Elbaum, G. Rothermel, and J. Penix, “Techniques for Improving Regression Testing
in Continuous Integration Development Environments,” in FSE, 2014.

[18] A. Labuschagne, L. Inozemtseva, and R. Holmes, “Measuring the Cost of Regression
Testing in Practice: A Study of Java Projects Using Continuous Integration,” in FSE,
2017.

[19] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov, “Quality and Productivity
Outcomes Relating to Continuous Integration in GitHub,” in FSE, 2015.

[20] A. Memon, Z. Gao, B. Nguyen, S. Dhanda, E. Nickell, R. Siemborski, and J. Micco,
“Taming Google-Scale Continuous Testing,” in ICSE-SEIP, 2017.

[21] Netflix, “Automated Testing on Devices,” https://netflixtechblog.com/
automated-testing-on-devices-fc5a39f47e24, 2016.

[22] J. Anderson, S. Salem, and H. Do, “Improving the Effectiveness of Test Suite through
Mining Historical Data,” in MSR, 2014.

[23] M. Machalica, A. Samylkin, M. Porth, and S. Chandra, “Predictive Test Selection,” in
ICSE-SEIP, 2019.

[24] C. Pan and M. Pradel, “Continuous Test Suite Failure Prediction,” in ISSTA, 2021.

[25] K. Herzig, M. Greiler, J. Czerwonka, and B. Murphy, “The art of testing less without
sacrificing quality,” in ICSE, 2015.

[26] I. Bouzenia and M. Pradel, “Resource Usage and Optimization Opportunities in
Workflows of GitHub Actions,” in ICSE, 2024.

[27] R. Pan, M. Bagherzadeh, T. A. Ghaleb, and L. Briand, “Test Case Selection and
Prioritization Using Machine Learning: A Systematic Literature Review,” ESE, vol. 27,
2022.

[28] R. Greca, B. Miranda, and A. Bertolino, “State of Practical Applicability of Regression
Testing Research: A Live Systematic Literature Review,” ACM Computing Surveys,
2023.

[29] G. Rothermel and M. J. Harrold, “Analyzing Regression Test Selection Techniques,”
TSE, vol. 22, 1996.

[30] T. L. Graves, M. J. Harrold, J.-M. Kim, A. Porter, and G. Rothermel, “An Empirical
Study of Regression Test Selection Techniques,” TOSEM, vol. 10, 2001.

94

https://netflixtechblog.com/automated-testing-on-devices-fc5a39f47e24
https://netflixtechblog.com/automated-testing-on-devices-fc5a39f47e24

[31] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A.
Spoon, and A. Gujarathi, “Regression Test Selection for Java Software,” ACM Sigplan
Notices, vol. 36, 2001.

[32] H.-Y. Hsu and A. Orso, “MINTS: A General Framework and Tool for Supporting
Test-Suite Minimization,” in ICSE, 2009.

[33] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong, “An Empirical Study of the
Effects of Minimization on the Fault Detection Capabilities of Test Suites,” in ICSME,
1998.

[34] M. J. Harrold, R. Gupta, and M. L. Soffa, “A Methodology for Controlling the Size of
a Test Suite,” TOSEM, vol. 2, 1993.

[35] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Test Case Prioritization: An
Empirical Study,” in ICSM, 1999.

[36] D. Elsner, F. Hauer, A. Pretschner, and S. Reimer, “Empirically Evaluating Readily
Available Information for Regression Test Optimization in Continuous Integration,” in
ISSTA, 2021.

[37] A. S. Yaraghi, M. Bagherzadeh, N. Kahani, and L. C. Briand, “Scalable and Accurate
Test Case Prioritization in Continuous Integration Contexts,” TSE, vol. 49, 2022.

[38] J.-M. Kim and A. Porter, “A History-Based Test Prioritization Technique for Regression
Testing in Resource Constrained Environments,” in ICSE, 2002.

[39] R. K. Saha, L. Zhang, S. Khurshid, and D. E. Perry, “An Information Retrieval
Approach for Regression Test Prioritization Based on Program Changes,” in ICSE,
2015.

[40] Q. Peng, A. Shi, and L. Zhang, “Empirically Revisiting and Enhancing IR-Based
Test-Case Prioritization,” in ISSTA, 2020.

[41] A. Bertolino, A. Guerriero, B. Miranda, R. Pietrantuono, and S. Russo, “Learning-to-
Rank vs Ranking-to-Learn: Strategies for Regression Testing in Continuous Integration,”
in ICSE, 2020.

[42] H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement Learning for
Automatic Test Case Prioritization and Selection in Continuous Integration,” in ISSTA,
2017.

[43] B. Busjaeger and T. Xie, “Learning for Test Prioritization: An Industrial Case Study,”
in FSE, 2016.

[44] R. Lachmann, S. Schulze, M. Nieke, C. Seidl, and I. Schaefer, “System-Level Test Case
Prioritization Using Machine Learning,” in ICMLA, 2016.

[45] J. Zhou, J. Chen, and D. Hao, “Parallel Test Prioritization,” TOSEM, vol. 31, 2021.

95

[46] Q. Luo, K. Moran, and D. Poshyvanyk, “A Large-Scale Empirical Comparison of Static
and Dynamic Test Case Prioritization Techniques,” in FSE, 2016.

[47] Y. Lu, Y. Lou, S. Cheng, L. Zhang, D. Hao, Y. Zhou, and L. Zhang, “How Does
Regression Test Prioritization Perform in Real-World Software Evolution?” in ICSE,
2016.

[48] C. Henard, M. Papadakis, M. Harman, Y. Jia, and Y. Le Traon, “Comparing White-box
and Black-box Test Prioritization,” in ICSE, 2016.

[49] R. Cheng, S. Wang, R. Jabbarvand, and D. Marinov, “Revisiting Test-Case Prioritiza-
tion on Long-Running Test Suites,” in ISSTA, 2024.

[50] R. Cheng, L. Zhang, D. Marinov, and T. Xu, “Test-Case Prioritization for Configuration
Testing,” in ISSTA, 2021.

[51] R. Cheng, K. Ke, and D. Marinov, “pytest-ranking: A Regression Test Prioritization
Tool for Python,” in FSE Companion, 2025.

[52] X. Sun, R. Cheng, J. Chen, E. Ang, O. Legunsen, and T. Xu, “Testing Configuration
Changes in Context to Prevent Production Failures,” in OSDI, 2020.

[53] S. Wang, X. Lian, Q. Li, D. Marinov, and T. Xu, “Ctest4J: A Practical Configuration
Testing Framework for Java,” in FSE Companion, 2024.

[54] R. Cheng, G. Balasubramaniam, Y. He, Y.-H. H. Tsai, and H. Zhao, “Greedy Modality
Selection via Approximate Submodular Maximization,” in UAI, 2022.

[55] Y. He, R. Cheng, G. Balasubramaniam, Y.-H. H. Tsai, and H. Zhao, “Efficient Modality
Selection in Multimodal Learning,” JMLR, vol. 25, 2024.

[56] R. Cheng, C. Cai, S. Yilmaz, R. Mitra, M. Bag, M. Ghosh, and T. Xu, “Towards GPU
Memory Efficiency for Distributed Training at Scale,” in SoCC, 2023.

[57] R. Cheng, M. Tufano, J. Cito, J. Cambronero, P. Rondon, R. Wei, A. Sun, and
S. Chandra, “Agentic Bug Reproduction for Effective Automated Program Repair at
Google,” arXiv:2502.01821, 2025.

[58] X. Lian, Y. Chen, R. Cheng, J. Huang, P. Thakkar, M. Zhang, and T. Xu, “Large
Language Models as Configuration Validators,” in ICSE, 2024.

[59] Y. Tang, R. Cheng, P. Zhou, T. Liu, F. Liu, W. Tang, K. Bae, J. Chen, W. Xiang, and
R. Shi, “Exploring CXL-based KV Cache Storage for LLM Serving,” NeurIPS Machine
Learning for Systems Workshop, 2025.

[60] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold, “Prioritizing Test Cases for
Regression Testing,” TSE, vol. 27, 2001.

[61] J. Chen, Y. Lou, L. Zhang, J. Zhou, X. Wang, D. Hao, and L. Zhang, “Optimizing
Test Prioritization via Test Distribution Analysis,” in FSE, 2018.

96

[62] T. Mattis, P. Rein, F. Dursch, and R. Hirschfeld, “RTPTorrent: An Open-source
Dataset for Evaluating Regression Test Prioritization,” in MSR, 2020.

[63] M. Beller, G. Gousios, and A. Zaidman, “Oops, My Tests Broke the Build: An
Explorative Analysis of Travis CI with GitHub,” in MSR, 2017.

[64] M. Beller, G. Gousios, and A. Zaidman, “TravisTorrent: Synthesizing Travis CI and
GitHub for Full-Stack Research on Continuous Integration,” in MSR, 2017.

[65] E. Fallahzadeh and P. C. Rigby, “The Impact of Flaky Tests on Historical Test
Prioritization on Chrome,” in ICSE-SEIP, 2022.

[66] S. Wang, S. Ali, T. Yue, Ø. Bakkeli, and M. Liaaen, “Enhancing Test Case Prioritization
in an Industrial Setting with Resource Awareness and Multi-objective Search,” in ICSE-
Companion, 2016.

[67] P. E. Strandberg, W. Afzal, T. J. Ostrand, E. J. Weyuker, and D. Sundmark, “Auto-
mated System Level Regression Test Prioritization in a Nutshell,” Software, vol. 34,
2017.

[68] A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, “Evaluating Test-Suite
Reduction in Real Software Evolution,” in ISSTA, 2018.

[69] J. Anderson, S. Salem, and H. Do, “Striving for Failure: An Industrial Case Study
about Test Failure Prediction,” in ICSE, 2015.

[70] A. Najafi, W. Shang, and P. C. Rigby, “Improving Test Effectiveness Using Test
Executions History: An Industrial Experience Report,” in ICSE-SEIP, 2019.

[71] T. B. Noor and H. Hemmati, “A Similarity-Based Approach for Test Case Prioritization
Using Historical Failure Data,” in ISSRE, 2015.

[72] T. B. Noor and H. Hemmati, “Studying Test Case Failure Prediction for Test Case
Prioritization,” in PROMISE, 2017.

[73] X. Jin and F. Servant, “A Cost-efficient Approach to Building in Continuous Integration,”
in ICSE, 2020.

[74] C. Leong, A. Singh, M. Papadakis, Y. Le Traon, and J. Micco, “Assessing Transition-
based Test Selection Algorithms at Google,” in ICSE-SEIP, 2019.

[75] R. White, J. Krinke, and R. Tan, “Establishing Multilevel Test-to-Code Traceability
Links,” in ICSE, 2020.

[76] E. Knauss, M. Staron, W. Meding, O. Soder, A. Nilsson, and M. Castell, “Supporting
Continuous Integration by Code-Churn Based Test Selection,” in RCoSE, 2015.

[77] A. Nanda, S. Mani, S. Sinha, M. J. Harrold, and A. Orso, “Regression Testing in the
Presence of Non-code Changes,” in ICST, 2011.

97

[78] A. A. Philip, R. Bhagwan, R. Kumar, C. S. Maddila, and N. Nagappan, “FastLane:
Test Minimization for Rapidly Deployed Large-Scale Online Services,” in ICSE, 2019.

[79] M. Sherriff, M. Lake, and L. Williams, “Prioritization of Regression Tests using Singular
Value Decomposition with Empirical Change Records,” in ISSRE, 2007.

[80] G. Salton and C. Buckley, “Term-Weighting Approaches in Automatic Text Retrieval,”
Information Processing & Management, vol. 24, 1988.

[81] S. E. Robertson, S. Walker, and M. Beaulieu, “Experimentation As a Way of Life:
Okapi at TREC,” Information processing & management, vol. 36, 2000.

[82] “Git diff documentation,” https://git-scm.com/docs/git-diff#Documentation/git-diff.
txt--Ultngt, 2023.

[83] D. Marijan, A. Gotlieb, and A. Sapkota, “Neural Network Classification for Improving
Continuous Regression Testing,” in AITest, 2020.

[84] R. Mamata, A. Azim, R. Liscano, K. Smith, Y.-K. Chang, G. Seferi, and Q. Tauseef,
“Test Case Prioritization using Transfer Learning in Continuous Integration Environ-
ments,” in AST, 2023.

[85] M. Bagherzadeh, N. Kahani, and L. Briand, “Reinforcement Learning for Test Case
Prioritization,” TSE, vol. 48, 2021.

[86] S. Omri and C. Sinz, “Learning to Rank for Test Case Prioritization,” in SBST, 2022.

[87] “Apache Software Foundation,” https://www.apache.org/, 2023.

[88] A. Mockus, R. T. Fielding, and J. D. Herbsleb, “Two Case Studies of Open Source
Software Development: Apache and Mozilla,” TOSEM, vol. 11, 2002.

[89] “Workflow usage limits,” https://docs.github.com/en/actions/
administering-github-actions/usage-limits-billing-and-administration, 2025.

[90] “Hadoop CI server,” https://ci-hadoop.apache.org/job/hadoop-multibranch/, 2023.

[91] “Kafka CI server,” https://ci-builds.apache.org/job/Kafka, 2023.

[92] “Jenkins remote access API ,” https://www.jenkins.io/doc/book/using/
remote-access-api/, 2023.

[93] “Maven,” http://maven.apache.org, 2023.

[94] “Gradle,” https://gradle.org/, 2023.

[95] “GitHub API - pulls,” https://docs.github.com/en/rest/pulls?apiVersion=2022-11-28,
2022.

98

https://git-scm.com/docs/git-diff#Documentation/git-diff.txt--Ultngt
https://git-scm.com/docs/git-diff#Documentation/git-diff.txt--Ultngt
https://www.apache.org/
https://docs.github.com/en/actions/administering-github-actions/usage-limits-billing-and-administration
https://docs.github.com/en/actions/administering-github-actions/usage-limits-billing-and-administration
https://ci-hadoop.apache.org/job/hadoop-multibranch/
https://ci-builds.apache.org/job/Kafka
https://www.jenkins.io/doc/book/using/remote-access-api/
https://www.jenkins.io/doc/book/using/remote-access-api/
http://maven.apache.org
https://gradle.org/
https://docs.github.com/en/rest/pulls?apiVersion=2022-11-28

[96] “Jenkins pipeline syntax,” https://www.jenkins.io/doc/book/pipeline/syntax/
#parallel, 2023.

[97] “Kafka Jenkinsfile,” https://github.com/apache/kafka/blob/
7d39d7400c919a519fb73d93e311eba9b13bbb97/Jenkinsfile#L101, 2023.

[98] “GitHub API - compare two commits,” https://docs.github.com/en/rest/commits/
commits?apiVersion=2022-11-28#compare-two-commits, 2022.

[99] A. Danial, “cloc: v1.92,” https://doi.org/10.5281/zenodo.5760077, 2021.

[100] J. Candido, L. Melo, and M. d’Amorim, “Test Suite Parallelization in Open-Source
Projects: A Study on Its Usage and Impact,” in ASE, 2017.

[101] Z. Q. Zhou, C. Liu, T. Y. Chen, T. Tse, and W. Susilo, “Beating Random Test Case
Prioritization,” Transactions on Reliability, vol. 70, 2020.

[102] F. Li, J. Zhou, Y. Li, D. Hao, and L. Zhang, “AGA: An Accelerated Greedy Additional
Algorithm for Test Case Prioritization,” TSE, vol. 48, 2021.

[103] M. Abdelkarim and R. ElAdawi, “TCP-Net: Test Case Prioritization using End-to-End
Deep Neural Networks,” in ICSTW, 2022.

[104] J. A. P. Lima and S. R. Vergilio, “A Multi-Armed Bandit Approach for Test Case
Prioritization in Continuous Integration Environments,” TSE, vol. 48, 2020.

[105] A. Sharif, D. Marijan, and M. Liaaen, “DeepOrder: Deep Learning for Test Case
Prioritization in Continuous Integration Testing,” in ICSME, 2021.

[106] “Dataset of Long-Running Test Suites,” https://zenodo.org/records/12662090, 2024.

[107] O. Parry, G. M. Kapfhammer, M. Hilton, and P. McMinn, “A Survey of Flaky Tests,”
TOSEM, vol. 31, 2021.

[108] W. Lam, A. Shi, R. Oei, S. Zhang, M. D. Ernst, and T. Xie, “Dependent-Test-Aware
Regression Testing Techniques,” in ISSTA, 2020.

[109] S. Greenland, J. Pearl, and J. M. Robins, “Confounding and Collapsibility in Causal
Inference,” Statistical science, vol. 14, 1999.

[110] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An Empirical Analysis of Flaky Tests,”
in FSE, 2014.

[111] “Maven Surefire rerunFailingTestsCount,” https://maven.apache.org/surefire/
maven-surefire-plugin/examples/rerun-failing-tests.html, 2023.

[112] “pytest-rerunfailures,” https://pypi.org/project/pytest-rerunfailures, 2023.

[113] “HBase flaky tests dashboard,” https://ci-hbase.apache.org/job/HBase-Flaky-Tests/,
2023.

99

https://www.jenkins.io/doc/book/pipeline/syntax/#parallel
https://www.jenkins.io/doc/book/pipeline/syntax/#parallel
https://github.com/apache/kafka/blob/7d39d7400c919a519fb73d93e311eba9b13bbb97/Jenkinsfile#L101
https://github.com/apache/kafka/blob/7d39d7400c919a519fb73d93e311eba9b13bbb97/Jenkinsfile#L101
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28#compare-two-commits
https://docs.github.com/en/rest/commits/commits?apiVersion=2022-11-28#compare-two-commits
https://doi.org/10.5281/zenodo.5760077
https://zenodo.org/records/12662090
https://maven.apache.org/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html
https://maven.apache.org/surefire/maven-surefire-plugin/examples/rerun-failing-tests.html
https://pypi.org/project/pytest-rerunfailures
https://ci-hbase.apache.org/job/HBase-Flaky-Tests/

[114] “Hive flaky tests dashboard,” http://ci.hive.apache.org/job/hive-flaky-check, 2023.

[115] “JIRA issue,” https://issues.apache.org/jira/issues, 2023.

[116] “JIRA fuzzy search,” https://confluence.atlassian.com/jirasoftwareserver/
advanced-searching-939938733.html, 2023.

[117] H. Do, G. Rothermel, and A. Kinneer, “Empirical studies of test case prioritization in
a JUnit testing environment,” in ISSRE, 2004.

[118] H. Mei, D. Hao, L. Zhang, L. Zhang, J. Zhou, and G. Rothermel, “A static approach
to prioritizing JUnit test cases,” TSE, vol. 38, 2012.

[119] J. Liang, S. Elbaum, and G. Rothermel, “Redefining Prioritization: Continuous Priori-
tization for Continuous Integration,” in ICSE, 2018.

[120] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating Varying Test Costs and
Fault Severities into Test Case Prioritization,” in ICSE, 2001.

[121] A. G. Malishevsky, J. R. Ruthruff, G. Rothermel, and S. Elbaum, “Cost-Cognizant
Test Case Prioritization,” 2006.

[122] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke, “Empirical Evaluation of
Pareto Efficient Multi-Objective Regression Test Case Prioritisation,” in ISSTA, 2015.

[123] M. Tan, L. Tan, S. Dara, and C. Mayeux, “Online Defect Prediction for Imbalanced
Data,” in ICSE, 2015.

[124] “sklearn.ensemble.HistGradientBoostingRegressor,” https://scikit-learn.org/stable/
modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html, 2023.

[125] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu,
“LightGBM: A Highly Efficient Gradient Boosting Decision Tree,” NeurIPS, vol. 30,
2017.

[126] “RETECS,” https://bitbucket.org/HelgeS/retecs/src/master, 2017.

[127] J. W. Tukey, “Comparing Individual Means in the Analysis of Variance,” Biometrics,
1949.

[128] Q. Luo, K. Moran, D. Poshyvanyk, and M. Di Penta, “Assessing Test Case Prioritization
on Real Faults and Mutants,” in ICSME, 2018.

[129] H. Srikanth, C. Hettiarachchi, and H. Do, “Requirements Based Test Prioritization
Using Risk Factors: An Industrial Study,” Information and Software Technology, 2016.

[130] S. Wang, D. Buchmann, S. Ali, A. Gotlieb, D. Pradhan, and M. Liaaen, “Multi-
Objective Test Prioritization in Software Product Line Testing: An Industrial Case
Study,” in SPLC, 2014.

100

http://ci.hive.apache.org/job/hive-flaky-check
https://issues.apache.org/jira/issues
https://confluence.atlassian.com/jirasoftwareserver/advanced-searching-939938733.html
https://confluence.atlassian.com/jirasoftwareserver/advanced-searching-939938733.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.HistGradientBoostingRegressor.html
https://bitbucket.org/HelgeS/retecs/src/master

[131] R. Carlson, H. Do, and A. Denton, “A Clustering Approach to Improving Test Case
Prioritization: An Industrial Case Study,” in ICSM, 2011.

[132] “TestYarnNativeServices,” https://github.com/apache/hadoop/blob/trunk/
hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-services/
hadoop-yarn-services-core/src/test/java/org/apache/hadoop/yarn/service/
TestYarnNativeServices.java, 2023.

[133] Q. Peng, A. Shi, and L. Zhang, “IR-Based TCP dataset,” https://sites.google.com/
view/ir-based-tcp, 2023.

[134] Z. Yu, F. Fahid, T. Menzies, G. Rothermel, K. Patrick, and S. Cherian, “TERMINA-
TOR: Better Automated UI Test Case Prioritization,” in FSE, 2019.

[135] H. Wang, P. Yi, J. Parladorio, W. Lam, D. Marinov, and T. Xie, “Hierarchy-Aware
Regression Test Prioritization,” in ISSRE, 2024.

[136] X. Yang, K. Tang, and X. Yao, “A Learning-to-Rank Approach to Software Defect
Prediction,” Transactions on Reliability, vol. 64, 2014.

[137] B. Jiang, Z. Zhang, W. K. Chan, and T. Tse, “Adaptive Random Test Case Prioritiza-
tion,” in ASE, 2009.

[138] L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-Aware Test-Case Prioritization
using Integer Linear Programming,” in ISSTA, 2009.

[139] Z. Li, M. Harman, and R. M. Hierons, “Search Algorithms for Regression Test Case
Prioritization,” TSE, vol. 33, 2007.

[140] L. Zhang, D. Marinov, and S. Khurshid, “Faster Mutation Testing Inspired by Test
Prioritization and Reduction,” in ISSTA, 2013.

[141] A. Gonzalez-Sanchez, E. Piel, H.-G. Gross, and A. J. van Gemund, “Prioritizing Tests
for Software Fault Localization,” in QSIC, 2010.

[142] Y. Qi, X. Mao, and Y. Lei, “Efficient Automated Program Repair Through Fault-
Recorded Testing Prioritization,” in ICSM, 2013.

[143] Y. Lou, S. Benton, D. Hao, L. Zhang, and L. Zhang, “How Does Regression
Test Selection Affect Program Repair? An Extensive Study on 2 Million Patches,”
arXiv:2105.07311, 2021.

[144] A. Ghanbari, S. Benton, and L. Zhang, “Practical Program Repair via Bytecode
Mutation,” in ISSTA, 2019.

[145] X. Qu, M. B. Cohen, and G. Rothermel, “Configuration-Aware Regression Testing: An
Empirical Study of Sampling and Prioritization,” in ISSTA, 2008.

[146] H. Srikanth, M. B. Cohen, and X. Qu, “Reducing Field Failures in System Configurable
Software: Cost-Based Prioritization,” in ISSRE, 2009.

101

https://github.com/apache/hadoop/blob/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-services/hadoop-yarn-services-core/src/test/java/org/apache/hadoop/yarn/service/TestYarnNativeServices.java
https://github.com/apache/hadoop/blob/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-services/hadoop-yarn-services-core/src/test/java/org/apache/hadoop/yarn/service/TestYarnNativeServices.java
https://github.com/apache/hadoop/blob/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-services/hadoop-yarn-services-core/src/test/java/org/apache/hadoop/yarn/service/TestYarnNativeServices.java
https://github.com/apache/hadoop/blob/trunk/hadoop-yarn-project/hadoop-yarn/hadoop-yarn-applications/hadoop-yarn-services/hadoop-yarn-services-core/src/test/java/org/apache/hadoop/yarn/service/TestYarnNativeServices.java
https://sites.google.com/view/ir-based-tcp
https://sites.google.com/view/ir-based-tcp

[147] Z. Pan, S. Zhou, J. Wang, J. Wang, J. Jia, and Y. Feng, “Test Case Prioritization for
Deep Neural Networks,” in DSA, 2022.

[148] Z. Wang, H. You, J. Chen, Y. Zhang, X. Dong, and W. Zhang, “Prioritizing Test
Inputs for Deep Neural Networks via Mutation Analysis,” in ICSE, 2021.

[149] A. Haghighatkhah, M. Mantyla, M. Oivo, and P. Kuvaja, “Test Prioritization in
Continuous Integration Environments,” Journal of Systems and Software, vol. 146,
2018.

[150] A. Sherman, P. Lisiecki, A. Berkheimer, and J. Wein, “ACMS: Akamai Configuration
Management System,” in NSDI, 2005.

[151] B. Maurer, “Fail at Scale: Reliability in the Face of Rapid Change,” CACM, vol. 58,
2015.

[152] H. J. Wang, J. C. Platt, Y. Chen, R. Zhang, and Y.-M. Wang, “Automatic misconfigu-
ration troubleshooting with PeerPressure,” in OSDI, Dec. 2004.

[153] S. Mehta, R. Bhagwan, R. Kumar, B. Ashok, C. Bansal, C. Maddila, C. Bird, S. Asthana,
and A. Kumar, “Rex: Preventing Bugs and Misconfiguration in Large Services using
Correlated Change Analysis,” in NSDI, 2020.

[154] C. Tang, T. Kooburat, P. Venkatachalam, A. Chander, Z. Wen, A. Narayanan, P. Dowell,
and R. Karl, “Holistic Configuration Management at Facebook,” in SOSP, 2015.

[155] J. Shieber, “Facebook Blames a Server Configuration Change
for Yesterday’s Outage,” https://techcrunch.com/2019/03/14/
facebook-blames-a-misconfigured-server-for-yesterdays-outage, 2019.

[156] R. Johnson, “More Details on Today’s Outage,” http://www.facebook.com/note.php?
note id=431441338919, Sep. 2010.

[157] L. A. Barroso, U. Hölzle, and P. Ranganathan, The Datacenter as a Computer:
Designing Warehouse-Scale Machines. Morgan and Claypool Publishers, 2018.

[158] H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, A. D. Satria, J. Adityatama, and
K. J. Eliazar, “Why does the cloud stop computing? Lessons from hundreds of service
outages,” in SoCC, 2016.

[159] D. Oppenheimer, A. Ganapathi, and D. A. Patterson, “Why Do Internet Services Fail,
and What Can Be Done About It?” in USITS, 2003.

[160] K. Nagaraja, F. Oliveira, R. Bianchini, R. P. Martin, and T. D. Nguyen, “Understanding
and Dealing with Operator Mistakes in Internet Services,” in OSDI, 2004.

[161] Z. Yin, X. Ma, J. Zheng, Y. Zhou, L. N. Bairavasundaram, and S. Pasupathy, “An
Empirical Study on Configuration Errors in Commercial and Open Source Systems,”
in SOSP, 2011.

102

https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage
https://techcrunch.com/2019/03/14/facebook-blames-a-misconfigured-server-for-yesterdays-outage
http://www.facebook.com/note.php?note_id=431441338919
http://www.facebook.com/note.php?note_id=431441338919

[162] T. Xu and Y. Zhou, “Systems Approaches to Tackling Configuration Errors: A Survey,”
ACM Computing Surveys, vol. 47, 2015.

[163] S. Kendrick, “What Takes Us Down?” USENIX ;login:, vol. 37, 2012.

[164] A. Rabkin and R. Katz, “How Hadoop Clusters Break,” IEEE Software, vol. 30, 2013.

[165] T. Xu, X. Jin, P. Huang, Y. Zhou, S. Lu, L. Jin, and S. Pasupathy, “Early Detection
of Configuration Errors to Reduce Failure Damage,” in OSDI, 2016.

[166] T. Xu, L. Jin, X. Fan, Y. Zhou, S. Pasupathy, and R. Talwadker, “Hey, You Have Given
Me Too Many Knobs! Understanding and Dealing with Over-Designed Configuration
in System Software,” in FSE, 2015.

[167] T. Xu and O. Legunsen, “Configuration Testing: Testing Configuration Values as Code
and with Code,” arXiv:1905.12195, 2019.

[168] S. Baset, S. Suneja, N. Bila, O. Tuncer, and C. Isci, “Usable Declarative Configuration
Specification and Validation for Applications, Systems, and Cloud,” in Middleware,
2017.

[169] P. Huang, W. J. Bolosky, A. Sigh, and Y. Zhou, “ConfValley: A Systematic Configura-
tion Validation Framework for Cloud Services,” in EuroSys, 2015.

[170] R. Potharaju, J. Chan, L. Hu, C. Nita-Rotaru, M. Wang, L. Zhang, and N. Jain, “Con-
fSeer: Leveraging Customer Support Knowledge Bases for Automated Misconfiguration
Detection,” in VLDB, 2015.

[171] Q. Chen, T. Wang, O. Legunsen, S. Li, and T. Xu, “Understanding and Discovering
Software Configuration Dependencies in Cloud and Datacenter Systems,” in FSE, 2020.

[172] N. Palatin, A. Leizarowitz, A. Schuster, and R. Wolff, “Mining for Misconfigured
Machines in Grid Systems,” in KDD, 2006.

[173] M. Santolucito, E. Zhai, R. Dhodapkar, A. Shim, and R. Piskac, “Synthesizing Config-
uration File Specifications with Association Rule Learning,” in OOPSLA, 2017.

[174] M. Santolucito, E. Zhai, and R. Piskac, “Probabilistic Automated Language Learning
for Configuration Files,” in CAV, 2016.

[175] O. Tuncer, N. Bila, C. Isci, and A. K. Coskun, “ConfEx: An Analytics Framework for
Text-Based Software Configurations in the Cloud,” IBM Research, Tech. Rep., Mar.
2018.

[176] D. Yuan, Y. Xie, R. Panigrahy, J. Yang, C. Verbowski, and A. Kumar, “Context-based
Online Configuration Error Detection,” in USENIX ATC, 2011.

[177] J. Zhang, L. Renganarayana, X. Zhang, N. Ge, V. Bala, T. Xu, and Y. Zhou, “EnCore:
Exploiting System Environment and Correlation Information for Misconfiguration
Detection,” in ASPLOS, 2014.

103

[178] C. Xiang, H. Huang, A. Yoo, Y. Zhou, and S. Pasupathy, “PracExtractor: Extracting
Configuration Good Practices from Manuals to Detect Server Misconfigurations,” in
USENIX ATC, 2020.

[179] C. Xiang, Y. Wu, B. Shen, M. Shen, H. Huang, T. Xu, Y. Zhou, C. Moore, X. Jin, and
T. Sheng, “Towards Continuous Access Control Validation and Forensics,” in CCS,
2019.

[180] Q. Huang, H. J. Wang, and N. Borisov, “Privacy-Preserving Friends Troubleshooting
Network,” in NDSS, 2005.

[181] H. J. Wang, Y.-C. Hu, C. Yuan, Z. Zhang, and Y.-M. Wang, “Friends Troubleshooting
Network: Towards Privacy-Preserving, Automatic Troubleshooting,” in IPTPS, 2004.

[182] C. H. P. Kim, D. Marinov, S. Khurshid, D. Batory, S. Souto, P. Barros, and
M. D’Amorim, “SPLat: Lightweight Dynamic Analysis for Reducing Combinatorics in
Testing Configurable Systems,” in FSE, 2013.

[183] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Heymans, and Y. L. Traon,
“Bypassing the Combinatorial Explosion: Using Similarity to Generate and Prioritize
T-Wise Test Configurations for Software Product Lines,” TSE, vol. 40, 2014.

[184] M. Mukelabai, D. Nešić, S. Maro, T. Berger, and J.-P. Steghöfer, “Tackling Combi-
natorial Explosion: A Study of Industrial Needs and Practices for Analyzing Highly
Configurable Systems,” in ASE, 2018.

[185] F. Medeiros, C. Kästner, M. Ribeiro, R. Gheyi, and S. Apel, “A Comparison of 10
Sampling Algorithms for Configurable Systems,” in ICSE, 2016.

[186] T. Xu, J. Zhang, P. Huang, J. Zheng, T. Sheng, D. Yuan, Y. Zhou, and S. Pasupathy,
“Do Not Blame Users for Misconfigurations,” in SOSP, 2013.

[187] L. Keller, P. Upadhyaya, and G. Candea, “ConfErr: A Tool for Assessing Resilience to
Human Configuration Errors,” in DSN, 2008.

[188] D. Paterson, J. Campos, R. Abreu, G. M. Kapfhammer, G. Fraser, and P. McMinn,
“An Empirical Study on the Use of Defect Prediction for Test Case Prioritization,” in
ICST, 2019.

[189] “openctest,” https://github.com/xlab-uiuc/openctest, 2020.

[190] “Docker Hub,” https://www.docker.com/products/docker-hub, 2020.

[191] T. Xu and D. Marinov, “Mining Container Image Repositories for Software Configura-
tions and Beyond,” in ICSE, 2018.

[192] A. Zeller, “Yesterday, my program worked. Today, it does not. Why?” in FSE, 1999.

[193] S. Zhang and M. D. Ernst, “Which Configuration Option Should I Change?” in ICSE,
2014.

104

https://github.com/xlab-uiuc/openctest
https://www.docker.com/products/docker-hub

[194] M. Attariyan and J. Flinn, “Automating Configuration Troubleshooting with Dynamic
Information Flow Analysis,” in OSDI, 2010.

[195] S. Zhang and M. D. Ernst, “Automated Diagnosis of Software Configuration Errors,”
in ICSE, 2013.

[196] A. Rabkin and R. Katz, “Precomputing Possible Configuration Error Diagnosis,” in
ASE, 2011.

[197] A. Whitaker, R. S. Cox, and S. D. Gribble, “Configuration Debugging as Search:
Finding the Needle in the Haystack,” in OSDI, 2004.

[198] M. Attariyan, M. Chow, and J. Flinn, “X-ray: Automating Root-Cause Diagnosis of
Performance Anomalies in Production Software,” in OSDI, 2012.

[199] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov, “DeFlaker:
Automatically Detecting Flaky Tests,” in ICSE, 2018.

[200] M. Parfianowicz and G. Lewandowski, “OpenClover,” https://openclover.org, 2017–
2018.

[201] “JavaParser,” https://javaparser.org/about.html, 2020.

[202] M. Stone, “Cross-Validatory Choice and Assessment of Statistical Predictions,” Journal
of the Royal Statistical Society. Series B (Methodological), vol. 36, 1974.

[203] L. Zhang, D. Hao, L. Zhang, G. Rothermel, and H. Mei, “Bridging the Gap between
the Total and Additional Test-Case Prioritization Strategies,” in ICSE, 2013.

[204] Q. Luo, K. Moran, L. Zhang, and D. Poshyvanyk, “How do Static and Dynamic Test
Case Prioritization Techniques Perform on Modern Software Systems? An Extensive
Study on GitHub Projects,” TSE, vol. 45, 2018.

[205] Y. Zhang, H. He, O. Legunsen, S. Li, W. Dong, and T. Xu, “An Evolutionary Study of
Configuration Design and Implementation in Cloud Systems,” in ICSE, 2021.

[206] S. Wang, X. Lian, D. Marinov, and T. Xu, “Test Selection for Unified Regression
Testing,” in ICSE, 2023.

[207] “[SUREFIRE-2041] Ordering test classes and methods according to -Dtest property,”
https://github.com/apache/maven-surefire/pull/560, 2025.

[208] “pytest-ranking,” https://github.com/softwareTestingResearch/pytest-ranking, 2025.

[209] “pytest-ranking,” https://pypi.org/project/pytest-ranking, 2025.

[210] “Pytest,” https://docs.pytest.org/en/stable/, 2025.

[211] “pytest-dev,” https://github.com/pytest-dev, 2025.

105

https://openclover.org
https://javaparser.org/about.html
https://github.com/apache/maven-surefire/pull/560
https://github.com/softwareTestingResearch/pytest-ranking
https://pypi.org/project/pytest-ranking
https://docs.pytest.org/en/stable/
https://github.com/pytest-dev

[212] “Entry points,” https://packaging.python.org/en/latest/specifications/entry-points/,
2025.

[213] “Making your plugin installable by others,” https://docs.pytest.org/en/stable/how-to/
writing plugins.html#making-your-plugin-installable-by-others, 2025.

[214] “Writing hooks,” https://docs.pytest.org/en/stable/how-to/writing hook functions.
html#writinghooks, 2025.

[215] “Pluggy: the pytest plugin system,” https://pluggy.readthedocs.io/en/stable/index.
html, 2025.

[216] “Pytest plugin manager,” https://docs.pytest.org/en/7.1.x/reference/reference.html#
pytestpluginmanager, 2025.

[217] “pytest collection modifyitems,” https://docs.pytest.org/en/7.1.x/reference/reference.
html#pytest.hookspec.pytest collection modifyitems, 2025.

[218] “Item,” https://docs.pytest.org/en/7.1.x/reference/reference.html#item, 2025.

[219] “Item node ID,” https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.
nodes.Node.nodeid, 2025.

[220] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi: Lightweight test selection,” in ICSE,
2015.

[221] “pytest runtest logreport,” https://docs.pytest.org/en/7.1.x/reference/reference.html#
pytest.hookspec.pytest runtest logreport, 2025.

[222] “TestReport,” https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.
TestReport, 2025.

[223] “Config cache,” https://docs.pytest.org/en/7.1.x/reference/reference.html#
config-cache, 2025.

[224] “Cache dir,” https://docs.pytest.org/en/7.1.x/reference/reference.html#confval-cache
dir, 2025.

[225] “pytest terminal summary,” https://docs.pytest.org/en/7.1.x/reference/reference.
html#pytest.hookspec.pytest terminal summary, 2025.

[226] “Configuration,” https://docs.pytest.org/en/stable/reference/customize.html#
command-line-options-and-configuration-file-settings, 2025.

[227] “Caching dependencies,” https://docs.github.com/en/actions/writing-workflows/
choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows, 2025.

[228] “pytest-xdist,” https://pypi.org/project/pytest-xdist/, 2025.

[229] “pytest-dependency,” https://pypi.org/project/pytest-dependency, 2025.

106

https://packaging.python.org/en/latest/specifications/entry-points/
https://docs.pytest.org/en/stable/how-to/writing_plugins.html#making-your-plugin-installable-by-others
https://docs.pytest.org/en/stable/how-to/writing_plugins.html#making-your-plugin-installable-by-others
https://docs.pytest.org/en/stable/how-to/writing_hook_functions.html#writinghooks
https://docs.pytest.org/en/stable/how-to/writing_hook_functions.html#writinghooks
https://pluggy.readthedocs.io/en/stable/index.html
https://pluggy.readthedocs.io/en/stable/index.html
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytestpluginmanager
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytestpluginmanager
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_collection_modifyitems
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_collection_modifyitems
https://docs.pytest.org/en/7.1.x/reference/reference.html#item
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.nodes.Node.nodeid
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.nodes.Node.nodeid
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_runtest_logreport
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_runtest_logreport
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.TestReport
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.TestReport
https://docs.pytest.org/en/7.1.x/reference/reference.html#config-cache
https://docs.pytest.org/en/7.1.x/reference/reference.html#config-cache
https://docs.pytest.org/en/7.1.x/reference/reference.html#confval-cache_dir
https://docs.pytest.org/en/7.1.x/reference/reference.html#confval-cache_dir
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_terminal_summary
https://docs.pytest.org/en/7.1.x/reference/reference.html#pytest.hookspec.pytest_terminal_summary
https://docs.pytest.org/en/stable/reference/customize.html#command-line-options-and-configuration-file-settings
https://docs.pytest.org/en/stable/reference/customize.html#command-line-options-and-configuration-file-settings
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows
https://docs.github.com/en/actions/writing-workflows/choosing-what-your-workflow-does/caching-dependencies-to-speed-up-workflows
https://pypi.org/project/pytest-xdist/
https://pypi.org/project/pytest-dependency

[230] “pytest-order,” https://pypi.org/project/pytest-order, 2025.

[231] “Rerun failed tests,” https://docs.pytest.org/en/stable/how-to/cache.html#
how-to-re-run-failed-tests-and-maintain-state-between-test-runs, 2025.

[232] “pytest-random-order,” https://pypi.org/project/pytest-random-order, 2025.

[233] “pytest-randomly,” https://pypi.org/project/pytest-randomly, 2025.

[234] “PyPI,” https://pypi.org, 2025.

[235] “BigQuery,” https://docs.pypi.org/api/bigquery, 2025.

[236] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser, “An Empirical Study of Flaky Tests
in Python,” in ICST, 2021.

[237] “REST API endpoints for commit statuses,” https://docs.github.com/en/rest/commits/
statuses?apiVersion=2022-11-28#get-the-combined-status-for-a-specific-reference,
2025.

[238] “GitHub actions,” https://docs.github.com/en/actions, 2025.

[239] “Using GitHub hosted runners,” https://docs.github.com/en/
actions/using-github-hosted-runners/using-github-hosted-runners/
about-github-hosted-runners#using-a-github-hosted-runner, 2025.

[240] S. Zhang, D. Jalali, J. Wuttke, K. Muşlu, W. Lam, M. D. Ernst, and D. Notkin,
“Empirically Revisiting the Test Independence Assumption,” in ISSTA, 2014.

[241] “List workflow runs,” https://docs.github.com/en/rest/actions/workflow-runs?
apiVersion=2022-11-28#list-workflow-runs-for-a-repository, 2025.

[242] “Repository archive,” https://docs.github.com/en/rest/repos/contents?apiVersion=
2022-11-28#download-a-repository-archive-zip, 2025.

[243] “UV: An extremely fast Python package and project manager,” https://docs.astral.sh/
uv/, 2025.

[244] “Parametrize,” https://docs.pytest.org/en/stable/how-to/parametrize.html, 2025.

[245] “pytest-json-report,” https://pypi.org/project/pytest-json-report, 2025.

[246] P. Yi, H. Wang, T. Xie, D. Marinov, and W. Lam, “A Theoretical Analysis of Random
Regression Test Prioritization,” in TACAS, 2022.

[247] R. Just, D. Jalali, and M. D. Ernst, “Defects4J: A Database of Existing Faults to
Enable Controlled Testing Studies for Java Programs,” in ISSTA, 2014.

[248] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “iDFlakies: A Framework for
Detecting and Partially Classifying Flaky Tests,” in ICST, 2019.

107

https://pypi.org/project/pytest-order
https://docs.pytest.org/en/stable/how-to/cache.html#how-to-re-run-failed-tests-and-maintain-state-between-test-runs
https://docs.pytest.org/en/stable/how-to/cache.html#how-to-re-run-failed-tests-and-maintain-state-between-test-runs
https://pypi.org/project/pytest-random-order
https://pypi.org/project/pytest-randomly
https://pypi.org
https://docs.pypi.org/api/bigquery
https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#get-the-combined-status-for-a-specific-reference
https://docs.github.com/en/rest/commits/statuses?apiVersion=2022-11-28#get-the-combined-status-for-a-specific-reference
https://docs.github.com/en/actions
https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners#using-a-github-hosted-runner
https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners#using-a-github-hosted-runner
https://docs.github.com/en/actions/using-github-hosted-runners/using-github-hosted-runners/about-github-hosted-runners#using-a-github-hosted-runner
https://docs.github.com/en/rest/actions/workflow-runs?apiVersion=2022-11-28#list-workflow-runs-for-a-repository
https://docs.github.com/en/rest/actions/workflow-runs?apiVersion=2022-11-28#list-workflow-runs-for-a-repository
https://docs.github.com/en/rest/repos/contents?apiVersion=2022-11-28#download-a-repository-archive-zip
https://docs.github.com/en/rest/repos/contents?apiVersion=2022-11-28#download-a-repository-archive-zip
https://docs.astral.sh/uv/
https://docs.astral.sh/uv/
https://docs.pytest.org/en/stable/how-to/parametrize.html
https://pypi.org/project/pytest-json-report

[249] S. Dutta, A. Arunachalam, and S. Misailovic, “To Seed or Not to Seed? An Empirical
Analysis of Usage of Seeds for Testing in Machine Learning Projects,” in ICST, 2022.

[250] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “iFixFlakies: A Framework for
Automatically Fixing Order-Dependent Flaky Tests,” in FSE, 2019.

[251] R. Wang, Y. Chen, and W. Lam, “iPFlakies: A Framework for Detecting and Fixing
Python Order-Dependent Flaky Tests,” in ICSE Companion, 2022.

[252] Y. Chen and R. Jabbarvand, “Neurosymbolic Repair of Test Flakiness,” in ISSTA,
2024.

[253] “Xunit-Style Setup,” https://docs.pytest.org/en/stable/how-to/xunit setup.html#
how-to-implement-xunit-style-set-up, 2025.

[254] A. Wei, P. Yi, T. Xie, D. Marinov, and W. Lam, “Probabilistic and Systematic Coverage
of Consecutive Test-Method Pairs for Detecting Order-Dependent Flaky Tests,” in
TACAS, 2021.

[255] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, “A Large-Scale Longitu-
dinal Study of Flaky Tests,” OOPSLA, vol. 4, 2020.

[256] J. Li, S. Li, K. Li, F. Luo, H. Yu, S. Li, and X. Li, “ECFuzz: Effective Configuration
Fuzzing for Large-Scale Systems,” in ICSE, 2024.

[257] Y. Lou, J. Yang, S. Benton, D. Hao, L. Tan, Z. Chen, L. Zhang, and L. Zhang, “When
Automated Program Repair Meets Regression Testing—An Extensive Study on Two
Million Patches,” TOSEM, vol. 33, 2024.

[258] A. Z. Yang, C. Le Goues, R. Martins, and V. Hellendoorn, “Large Language Models
for Test-Free Fault Localization,” in ICSE, 2024.

[259] Y. Chen, H. Xie, M. Ma, Y. Kang, X. Gao, L. Shi, Y. Cao, X. Gao, H. Fan, M. Wen,
J. Zeng, S. Ghosh, X. Zhang, C. Zhang, Q. Lin, S. Rajmohan, D. Zhang, and T. Xu,
“Automatic Root Cause Analysis via Large Language Models for Cloud Incidents,” in
EuroSys, 2024.

108

https://docs.pytest.org/en/stable/how-to/xunit_setup.html#how-to-implement-xunit-style-set-up
https://docs.pytest.org/en/stable/how-to/xunit_setup.html#how-to-implement-xunit-style-set-up

	Chapter 1 Introduction
	Thesis Statement
	Contributions
	Dissertation Organization

	Chapter 2 Regression Test Prioritization on Long-Running Test Suites
	Overview
	RTP Techniques
	Time-based RTP
	History-based RTP
	IR-based RTP
	Learning-based RTP
	Hybrid RTP

	Dataset of Long-Running Test Suites
	Project Selection
	Dataset Curation
	Dataset Overview
	Confounding Test Failures
	Comparison with Short-Running Test Suites

	Experimental Setup
	Evaluation Settings
	RTP Data Collection
	RTP Technique Implementation
	Experimental Procedure

	Evaluation
	RQ1: Effectiveness of RTP Techniques
	RQ2: Impact of Confounding Test Failures
	RQ3: Effectiveness on First Failures

	Threats to Validity
	Related Work
	Summary

	Chapter 3 Regression Test Prioritization for Configuration Testing
	Overview
	Background on Configuration Testing
	Applied and Proposed RTP Techniques
	Non-peer-Based RTP
	Peer-Based RTP
	Hybrid RTP

	Experimental Setup
	Research Questions
	Metrics
	Dataset Collection
	Implementation
	Experimental Procedure

	Evaluation
	RQ1: Basic Non-peer-Based RTP
	RQ2: Hybrid Non-peer-Based RTP
	RQ3: Peer-Based RTP
	Summary

	Threats to Validity
	Related Work
	Discussion
	Summary

	Chapter 4 Regression Test Prioritization Tool for Python
	Overview
	Implementation of pytest-ranking
	Tool Components

	Usage of pytest-ranking
	Experimental Setup
	Dataset Collection
	Experiment Procedure

	Evaluation
	Analysis of Test Failures
	RTP Effectiveness

	Summary

	Chapter 5 Conclusions and Future Work
	Conclusions
	Future Work
	Further Development of RTP Tool
	RTP for Configuration Testing
	Other Future Work on RTP

	Closing Remark

	Appendix A Other Work
	References

