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Abstract

Large language model (LLM) serving systems often store key-value (KV) cache
to reduce redundant inference computations. However, storing KV cache of long-
context requests under high-throughput serving demand can overwhelm GPU and
host memory. Recently, Compute Express Link (CXL) emerges as a promising
interconnect technology that offers low-latency host-device communication and
expanded memory capacity. In this paper, we explore leveraging CXL memory to
store KV cache in LLM serving. Our results show that CXL-GPU interconnect
performs comparably to CPU-GPU interconnect in both data-transfer latency and
bandwidth, enabling a 30% increase in batch size compared to full KV re-compute
under the same SLO. Our production Return on Investment (ROI) modeling further
shows that storing KV cache on CXL memory can reduce GPU requirements by
up to 87%, with 7.5x higher GPU utilization for prefill, compared to full KV
re-compute. Our overall results demonstrate the performance improvement and
resource benefits of using CXL memory to store KV cache in LLM serving.

1 Introduction

Autoregressive large language models (LLMs) generate output tokens sequentially, where the gen-
eration of each token involves the attention computation using key-value (KV) of its preceding
tokens [1]. This sequential dependency makes LLM inference both compute- and memory-intensive.
LLM inference typically includes two stages: the prefill stage, where all input tokens are processed
to generate the initial output token, and the decode stage, where the rest of the output tokens are
generated one by one until the model generates an end-of-sequence token [2, 3, 4].

For applications such as chatbot and coding assistant, LLM serving systems aim to minimize the
time to finish the prefill stage, or time to first token (TTFT). In production, service-level objective
(SLO) for TTFT is typically 400ms [3]. To meet such SLO, LLM serving systems often cache the
previously-computed KV data of the preceding tokens (i.e., prefix) in GPU memory, to avoid re-
computing them for future requests that have the same prefix [5, 3, 6]. Storing KV cache reduces the
overall computational load and significantly improves throughput by trading memory for computation.

In production chatbot applications that support large context windows, the demand for KV cache
storage grows rapidly by the number of inference requests from users, which cannot be fully accom-
modated by the limited and expensive GPU memory [7]. Researchers thus developed techniques
to offload KV cache to CPU memory, leveraging the larger CPU memory capacity to reduce GPU
memory pressure [6, 8, 9]. However, as larger LLMs and support for long-context inference requests
continue to emerge, the approach of storing KV cache to CPU memory is still insufficient. For
example, in LLaMA-2-7B, KV cache of token in FP32 precision is 1024KB; KV cache of a single
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request with 4096 tokens (maximum context length) is 4GB [10]. The memory demand from serving
many concurrent long-context requests can easily overwhelm even high-end memory servers [5, 11].

Practitioners increasingly turn to more scalable memory architectures, such as Compute Express Link
(CXL) memory [12, 13, 14], to address the growing memory demands of large-scale systems. CXL
expands memory capacity by connecting additional DRAM to servers via PCle, while maintaining
low-latency access. It offers a promising solution to the KV cache storage demand in LLM serving.

In this paper, We propose leveraging CXL memory for KV cache storage to improve throughput,
meet SLO on TTFT, and alleviate memory pressure in LLM serving systems. This paper makes the
following contributions:

* We present the first measurement of CXL-GPU interconnect and its feasibility for storing large
KV cache. We show that the data-transfer latency and bandwidth on CXL-GPU interconnect is on
par with CPU-GPU interconnect.

* We present our design of CXL-based KV cache storage interface and evaluate its performance
improvement to LLM serving, on our platform that is the first to successfully integrate ASIC-CXL
device and GPU. Our results show competitive TTFT achieved by CXL-based prefix caching.

* We examine the cost-efficiency in using CXL for KV cache storage in production via Return on
Investment (ROI) modeling. Estimates show a promising reduction in GPU compute cost when
using CXL for KV cache storage. We also identify promising future research directions.

2 CXL-based KV Cache Storage

We now present the design and implementation of our CXL-based KV cache storage interface for
LLM serving. We also describe the hardware platform used to evaluate our design.

Design and implementation. Our goal is to develop a CXL storage interface which can be integrated
into existing LLM serving systems for saving and loading KV cache of inference requests. The
interface provides two external APIs to its upper-level serving system: save and load. The save
takes a unique identifier of a token chunk as input, and copies its KV cache from GPU to CXL
memory. The load takes a unique identifier of a token chunk as input, and finds if its KV cache
exists in CXL memory, if so, copies the KV cache from CXL memory to GPU. A token chunk can
consist of one or more tokens. The unique identifier of a token chunk ¢; for a sequence is the hash of
the content of ¢; and the hash of its prefix (to, ..., t;—1). If the KV of the current request’s prefix has
been computed and saved into CXL, the KV cache will be loaded from CXL and used [5].

To avoid calling save and load too frequently and incurring unnecessary overhead to the upper-level
serving system, save is called only when a request is finished so the KV cache of all the tokens for
that request is saved at once; load is called when the prefill stage of a request begins.

We implement our design of CXL-based KV cache storage interface in gpt-fast [15], a low-latency
text generation system with support on a number of widely-used inference optimizations [16, 17, 18]
and open-source LLMs [10, 19]. We modify gpt-fast to support our evaluation on batched inference.

Hardware platform. Our single socket server is equipped with Intel Xeon Platinum processors [20],
1TB of 4800 MHz DDRS5 memory, an NVIDIA H100 GPU with 96GB HBM, and a CXL memory
expansion card with 256 GB of DDRS memory at 4800 MHz [13]. While prior works [21, 22, 23, 24]
have explored utilizing CXL for accelerators, to our knowledge, we are the first to integrate a real
ASIC-CXL device and a GPU within a single inference server and evaluate it for KV cache storage.

3 Performance Evaluation

In Section 3.1, we measure the latency and bandwidth of CXL-GPU interconnect for data transfer to
assess the feasibility of storing KV cache on CXL devices. In Section 3.2, we compare the TTFT of
KV re-compute, prefix caching with CXL, and prefix caching with GPU, to understand if CXL-based
KV cache storage can achieve similar TTFT as existing approaches for prefill requests under varying
context lengths. In Section 3.3, we study the maximum batch size achieved while retaining a given
SLO on TTFT between KV re-compute and prefix caching with CXL. In Section 3.4, we model the
ROI of CXL-based KV cache storage in production.
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Fig. 1: Experiment results. (a) Latency and bandwidth measurements across different access sizes, CXL-GPU
interconnect performs similarly as CPU-GPU interconnect. (b) TTFT comparison between KV re-compute and
prefix caching with CXL or GPU. (¢) Serving throughput comparison under a fixed SLO constraint (400ms).

3.1 Measurements on CXL-GPU interconnect performance

KV cache storage requires low-latency access. Although prior studies [12, 13] show that accessing
CXL memory from the host CPU is over 2x slower than accessing local memory, none of their
measurements involves any interaction with the GPU. In this paper, we evaluate the performance
characteristics of the CXL-GPU interconnect by measuring the latency and bandwidth of copying
data from CXL memory to the GPU. Transferring in the reverse direction yields similar results [25].
Since CXL memory devices are exposed to the system as NUMA nodes without CPUs by default [13],
we allocate a set of host buffers on the CXL NUMA node and use cudaMemcpyAsync to copy data
between the host buffers and GPU device buffers allocated via the CUDA API [26]. While prior work
evaluate data transfer in 64 bytes [24], we evaluated on sizes ranging from 1KB to 256MB.

Figure 1(a) shows that the performance of the CXL-GPU interconnect is unexpectedly on par with
traditional CPU-GPU memory transfers, exhibiting no significant slowdown. Latency remains low for
smaller access sizes but increases exponentially once the size exceeds 64KB. Meanwhile, bandwidth
increases almost linearly with data size and saturates around 4MB. This indicates that, while the CPU
oversees the data transfer, the data path actually bypasses the host’s local memory, flowing directly
from CXL memory to GPU buffers via PCle. Our results demonstrate that the CXL-GPU interconnect
operates efficiently with minimal latency overhead, positioning it as a promising expansion for KV
cache offloading [9, 27, 28] and swapping [5] in addition to CPU memory.

3.2 Evaluation on TTFT under varying input context length

Given that CXL-GPU interconnect performs nearly the same as CPU-GPU interconnect, we further
study if CXL-based KV cache storage can achieve similar TTFT as existing approaches in completing
the prefill stage computation for an inference request. We evaluate three approaches:

* Full KV re-compute: Compute KV data of all input tokens for the request with GPU.
¢ Prefix caching with CXL: Load KV cache of the prefix tokens for the request from CXL to GPU.
* Prefix caching with GPU: Store and use KV cache in GPU for the prefix tokens for the request.

We measure the TTFT of the aforementioned approaches on conversation requests of input length
ranging from 256 to 2048 tokens from the ShareGPT-Vicuna-Unfiltered dataset [29]. We use the
LLaMA-2-13B as the underlying model for our evaluation. Figure 1(b) shows the TTFT (y-axis in
log-scale) achieved by the evaluated approaches for requests of varying input context length (x-axis).

Compared to the other approaches, prefix caching with GPU (denoted as “PC-GPU” in Figure 1(b))
achieves the smallest TTFT (0.44ms to 0.56ms) constantly across different input context lengths.
Such performance is expected as there is no data transfer latency and computation of KV data is only
needed for tokens after the prefix. This approach is an optimal baseline that is however difficult to
achieve in practice due to limited memory capacity of existing GPU models and the rapidly growing
demand of KV cache storage in LLM serving.

Comparing prefix caching with CXL (denoted as “PC-CXL”) and KV re-compute, prefix caching
with CXL performs at least as good as computing KV data on GPU from scratch. Prefix caching
with CXL achieve TTFT ranging from 55ms to 336ms, with slight increase in latency as input size
length grows. The close performance gap between storing prefix KV cache in CXL memory and full
KV re-computation indicates that there is a potential opportunity to reduce GPU compute cost with
adaptation of CXL devices for memory capacity expansion in LLM inference.



3.3 Evaluation on serving throughput while adhering SLO

By storing the KV cache of the inference request prefix in CXL memory and thus reducing re-
computation during the prefill stage, we can effectively reduce the computational load on the GPU.
The saved GPU compute can be re-allocated to handle a larger number of concurrent inference
requests. In other words, the LLM serving system can achieve a higher serving throughput, by
handling a larger batch size of inference requests using the saved GPU compute, while maintaining
the same SLO on TTFT [3].

Figure 1(c) shows the TTFT achieved by KV re-compute and prefix caching with CXL under varying
batch size. The horizontal red-dashed line indicates our SLO limit—-the maximum TTFT that can be
tolerant in production. The typical SLO is 400ms used for LLaMA-2 [30]. As shown in Figure 1(c),
with KV re-compute, the evaluated serving system (§2) can handle a maximum batch size of 44 before
hitting the SLO limit. On the other hand, when leveraging CXL for storing KV cache, the system
can handle a maximum batch size of 57, which is a 30% increase compared to KV re-compute.
Our initial evaluation on SLO-adhering serving throughput highlights the performance benefits of
utilizing CXL memory for KV cache storage, particularly in scenarios that require efficient scaling
under strict latency requirements.

3.4 Cost-efficiency modeling

We apply a Return on Investment (ROI) model to estimate the cost-efficiency of CXL-based KV
cache storage, compared to full KV re-compute, in our production for chatbot application (§A.1).

e Assumption: A GPU has the computational power of 100 TFLOP/s, a prefill request on average
requires 25 TFLOP of computation, and the SLO on TTFT is 400ms (i.e., 0.4s).

¢ KV re-compute (baseline): To complete the prefill request within SLO, each request demands
62.5 TFLOP/s (25 TFLOP / 0.4s), meaning a single GPU can serve 1.6 prefill requests per second.

¢ CXL-based KV cache storage: By spending 0.1s loading the KV cache of the request prefix, we
reduce the computational demand to 2.5 TFLOP (assuming the prefix accounts for 90% of the
input for a request). To meet the same SLO, the remaining computation must be finished within
0.3s, requiring 8.3 TFLOP/s (2.5 TFLOP / 0.3s). In this case, a single GPU can serve 12 prefill
requests, which is 7.5x more requests per second with the same amount of GPU compute.

From the estimate, we can reduce the number of GPUs needed to reach the same throughput while
adhering SLO on TTFT by 87% when compared to KV re-compute. Overall, by replacing computation
with CXL memory access, we reduce the overall compute demand while still meeting the same SLO,
thereby resulting in significant GPU cost savings for LLM inference.

4 Conclusion and Future Work

Storing KV cache in GPU memory for LLM inference can quickly lead to memory saturation, limiting
serving scalability and performance. KV cache storage on CPU memory becomes limited as model
size and request context length increase. To that extent, we explore CXL memory for KV cache
offloading, in which CXL offers expanded capacity with low-latency access. Our preliminary results
show that CXL-GPU data transfer has similar latency and bandwidth as the CPU-GPU counterpart.
In addition, CXL-based KV cache offloading provides similar performance compared to full KV
re-compute on GPUs, while supporting larger workloads. Specifically, using CXL memory for KV
cache storage increased the maximum batch size by 30%, while maintaining the same SLO on TTFT.
Our cost-efficiency analysis further shows the potential for using CXL memory to substantially reduce
the GPU compute cost for high-throughput LLM serving under SLO. Looking ahead, future work
will explore the integration of CXL memory with multi-GPU systems, focusing on maintaining cache
coherence across GPUs that could further enhance the scalability and efficiency of LLM inference.
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A Appendix

A.1 Definition of Return on Investment (ROI) Model

Table 1 provides the definition of our ROI model used in §3.4 in the main text.

Table 1: ROI model.

Co Avg. FLOPs needed by a prefill request in an initial request. Can be estimated as Co = 2M L,
where M is the model parameters and L is the avg. sequence length.

Ch FLOPs needed by new prompt in a follow-up conversation request. Can be estimated as
C1 = rCo, where 7 is the avg. ratio of the new prompt (e.g., 10%).

Tsio SLO of prefill (e.g., 0.4s).

Tioad Avg. time to load KV cache from memory (e.g., 0.1s) using measurements from §3.1.

P Computation power (FLOP/s) of the GPU.

Py FLOP/s needed for the initial request. Py = Co/Tsi0

Py FLOP/s needed for the new prompt. P1 = C1/(Tsi0 — Tioad)

Rgpu Request per second (RPS) a single GPU can support. Ryp, = P/(Po(1 — h) + P1h), where h
is the ratio of multi-round requests.

Nz Number of GPUs needed using our CXL memory scheme. Ncyi = [R/Rgpu] =
[ Preraat e |

Npasetine ~ Number of GPUs needed without any KV cache stored (i.e., all data discarded after prefill).

Nbaseline - [%1
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